scholarly journals A Deep Learning Framework for the Detection of Tropical Cyclones from Satellite Images

Author(s):  
Aravind Nair ◽  
K S S Sai Srujan ◽  
Sayali Kulkarni ◽  
Kshitij Alwadhi ◽  
Navya Jain ◽  
...  

<div><div><div><p>Tropical cyclones (TCs) are the most destructive weather systems that form over the tropical oceans, with 90 storms forming globally every year. The timely detection and tracking of TCs are important for advanced warning to the affected regions. As these storms form over the open oceans far from the continents, remote sensing plays a crucial role in detecting them. Here we present an automated TC detection from satellite images based on a novel deep learning technique. In this study, we propose a multi-staged deep learning framework for the detection of TCs, including, (i) a detector - Mask Region-Convolutional Neural Network (R-CNN), (ii) a wind speed filter, and (iii) a classifier - CNN. The hyperparameters of the entire pipeline is optimized to showcase the best performance using Bayesian optimization. Results indicate that the proposed approach yields high precision (97.10%), specificity (97.59%), and accuracy (86.55%) for test images.</p></div></div></div>

2021 ◽  
Author(s):  
Aravind Nair ◽  
K S S Sai Srujan ◽  
Sayali Kulkarni ◽  
Kshitij Alwadhi ◽  
Navya Jain ◽  
...  

<div><div><div><p>Tropical cyclones (TCs) are the most destructive weather systems that form over the tropical oceans, with 90 storms forming globally every year. The timely detection and tracking of TCs are important for advanced warning to the affected regions. As these storms form over the open oceans far from the continents, remote sensing plays a crucial role in detecting them. Here we present an automated TC detection from satellite images based on a novel deep learning technique. In this study, we propose a multi-staged deep learning framework for the detection of TCs, including, (i) a detector - Mask Region-Convolutional Neural Network (R-CNN), (ii) a wind speed filter, and (iii) a classifier - CNN. The hyperparameters of the entire pipeline is optimized to showcase the best performance using Bayesian optimization. Results indicate that the proposed approach yields high precision (97.10%), specificity (97.59%), and accuracy (86.55%) for test images.</p></div></div></div>


Author(s):  
Hatem Keshk ◽  
Xu-Cheng Yin

Background: Deep Learning (DL) neural network methods have become a hotspot subject of research in the remote sensing field. Classification of aerial satellite images depends on spectral content, which is a challenging topic in remote sensing. Objective: With the aim to accomplish a high performance and accuracy of Egyptsat-1 satellite image classification, the use of the Convolutional Neural Network (CNN) is raised in this paper because CNN is considered a leading deep learning method. CNN is developed to classify aerial photographs into land cover classes such as urban, vegetation, desert, water bodies, soil, roads, etc. In our work, a comparison between MAXIMUM Likelihood (ML) which represents the traditional supervised classification methods and CNN method is conducted. Conclusion: This research finds that CNN outperforms ML by 9%. The convolutional neural network has better classification result, which reached 92.25% as its average accuracy. Also, the experiments showed that the convolutional neural network is the most satisfactory and effective classification method applied to classify Egyptsat-1 satellite images.


Author(s):  
Aravind Nair ◽  
K S S Sai Srujan ◽  
Sayali R. Kulkarni ◽  
Kshitij Alwadhi ◽  
Navya Jain ◽  
...  

2021 ◽  
Vol 26 (1) ◽  
pp. 200-215
Author(s):  
Muhammad Alam ◽  
Jian-Feng Wang ◽  
Cong Guangpei ◽  
LV Yunrong ◽  
Yuanfang Chen

AbstractIn recent years, the success of deep learning in natural scene image processing boosted its application in the analysis of remote sensing images. In this paper, we applied Convolutional Neural Networks (CNN) on the semantic segmentation of remote sensing images. We improve the Encoder- Decoder CNN structure SegNet with index pooling and U-net to make them suitable for multi-targets semantic segmentation of remote sensing images. The results show that these two models have their own advantages and disadvantages on the segmentation of different objects. In addition, we propose an integrated algorithm that integrates these two models. Experimental results show that the presented integrated algorithm can exploite the advantages of both the models for multi-target segmentation and achieve a better segmentation compared to these two models.


2021 ◽  
pp. 1-12
Author(s):  
Gaurav Sarraf ◽  
Anirudh Ramesh Srivatsa ◽  
MS Swetha

With the ever-rising threat to security, multiple industries are always in search of safer communication techniques both in rest and transit. Multiple security institutions agree that any systems security can be modeled around three major concepts: Confidentiality, Availability, and Integrity. We try to reduce the holes in these concepts by developing a Deep Learning based Steganography technique. In our study, we have seen, data compression has to be at the heart of any sound steganography system. In this paper, we have shown that it is possible to compress and encode data efficiently to solve critical problems of steganography. The deep learning technique, which comprises an auto-encoder with Convolutional Neural Network as its building block, not only compresses the secret file but also learns how to hide the compressed data in the cover file efficiently. The proposed techniques can encode secret files of the same size as of cover, or in some sporadic cases, even larger files can be encoded. We have also shown that the same model architecture can theoretically be applied to any file type. Finally, we show that our proposed technique surreptitiously evades all popular steganalysis techniques.


2018 ◽  
Vol 7 (11) ◽  
pp. 418 ◽  
Author(s):  
Tian Jiang ◽  
Xiangnan Liu ◽  
Ling Wu

Accurate and timely information about rice planting areas is essential for crop yield estimation, global climate change and agricultural resource management. In this study, we present a novel pixel-level classification approach that uses convolutional neural network (CNN) model to extract the features of enhanced vegetation index (EVI) time series curve for classification. The goal is to explore the practicability of deep learning techniques for rice recognition in complex landscape regions, where rice is easily confused with the surroundings, by using mid-resolution remote sensing images. A transfer learning strategy is utilized to fine tune a pre-trained CNN model and obtain the temporal features of the EVI curve. Support vector machine (SVM), a traditional machine learning approach, is also implemented in the experiment. Finally, we evaluate the accuracy of the two models. Results show that our model performs better than SVM, with the overall accuracies being 93.60% and 91.05%, respectively. Therefore, this technique is appropriate for estimating rice planting areas in southern China on the basis of a pre-trained CNN model by using time series data. And more opportunity and potential can be found for crop classification by remote sensing and deep learning technique in the future study.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A874-A874
Author(s):  
David Soong ◽  
David Soong ◽  
David Soong ◽  
Anantharaman Muthuswamy ◽  
Clifton Drew ◽  
...  

BackgroundRecent advances in machine learning and digital pathology have enabled a variety of applications including predicting tumor grade and genetic subtypes, quantifying the tumor microenvironment (TME), and identifying prognostic morphological features from H&E whole slide images (WSI). These supervised deep learning models require large quantities of images manually annotated with cellular- and tissue-level details by pathologists, which limits scale and generalizability across cancer types and imaging platforms. Here we propose a semi-supervised deep learning framework that automatically annotates biologically relevant image content from hundreds of solid tumor WSI with minimal pathologist intervention, thus improving quality and speed of analytical workflows aimed at deriving clinically relevant features.MethodsThe dataset consisted of >200 H&E images across >10 solid tumor types (e.g. breast, lung, colorectal, cervical, and urothelial cancers) from advanced disease patients. WSI were first partitioned into small tiles of 128μm for feature extraction using a 50-layer convolutional neural network pre-trained on the ImageNet database. Dimensionality reduction and unsupervised clustering were applied to the resultant embeddings and image clusters were identified with enriched histological and morphological characteristics. A random subset of representative tiles (<0.5% of whole slide tissue areas) from these distinct image clusters was manually reviewed by pathologists and assigned to eight histological and morphological categories: tumor, stroma/connective tissue, necrotic cells, lymphocytes, red blood cells, white blood cells, normal tissue and glass/background. This dataset allowed the development of a multi-label deep neural network to segment morphologically distinct regions and detect/quantify histopathological features in WSI.ResultsAs representative image tiles within each image cluster were morphologically similar, expert pathologists were able to assign annotations to multiple images in parallel, effectively at 150 images/hour. Five-fold cross-validation showed average prediction accuracy of 0.93 [0.8–1.0] and area under the curve of 0.90 [0.8–1.0] over the eight image categories. As an extension of this classifier framework, all whole slide H&E images were segmented and composite lymphocyte, stromal, and necrotic content per patient tumor was derived and correlated with estimates by pathologists (p<0.05).ConclusionsA novel and scalable deep learning framework for annotating and learning H&E features from a large unlabeled WSI dataset across tumor types was developed. This automated approach accurately identified distinct histomorphological features, with significantly reduced labeling time and effort required for pathologists. Further, this classifier framework was extended to annotate regions enriched in lymphocytes, stromal, and necrotic cells – important TME contexture with clinical relevance for patient prognosis and treatment decisions.


Sign in / Sign up

Export Citation Format

Share Document