scholarly journals Blockchain in Oil and Gas Industry: Applications, Challenges, and Future Trends

Author(s):  
Raja Wasim Ahmad ◽  
Khaled Salah ◽  
Raja Jayaraman ◽  
Ibrar Yaqoob ◽  
Mohammed Omar

Today's systems, approaches, and technologies leveraged for managing oil and gas supply chain operations fall short in providing operational transparency, traceability, audit, security, and trusted data provenance features. Also, a large portion of the existing systems is centralized, manual, and highly disintegrated which make them vulnerable to manipulation and the single point of failure problem. In this survey, we explore the potential opportunities and applications of blockchain technology in managing the exploration, production, and supply chain and logistics operations in the oil and gas industry as it can offer traceability, immutability, transparency, and audit features in a decentralized, trusted, and secure manner. We discuss state-of-the-art blockchain-based schemes, research projects, business initiatives, and case studies to highlight the practicability of blockchain in the oil and gas industry. We present the potential opportunities brought about by blockchain technology in various use cases and application scenarios. We introduce several systems that leverage blockchain-based smart contracts to automate the important services in terms of tracking and tracing of petroleum products, protection of international trade documents, and coordination of purchasing and bidding activities for granting oil exploration rights to petroleum exploration and development companies. Finally, we present open challenges acting as future research directions.

2021 ◽  
Author(s):  
Raja Wasim Ahmad ◽  
Khaled Salah ◽  
Raja Jayaraman ◽  
Ibrar Yaqoob ◽  
Mohammed Omar

Today's systems, approaches, and technologies leveraged for managing oil and gas supply chain operations fall short in providing operational transparency, traceability, audit, security, and trusted data provenance features. Also, a large portion of the existing systems is centralized, manual, and highly disintegrated which make them vulnerable to manipulation and the single point of failure problem. In this survey, we explore the potential opportunities and applications of blockchain technology in managing the exploration, production, and supply chain and logistics operations in the oil and gas industry as it can offer traceability, immutability, transparency, and audit features in a decentralized, trusted, and secure manner. We discuss state-of-the-art blockchain-based schemes, research projects, business initiatives, and case studies to highlight the practicability of blockchain in the oil and gas industry. We present the potential opportunities brought about by blockchain technology in various use cases and application scenarios. We introduce several systems that leverage blockchain-based smart contracts to automate the important services in terms of tracking and tracing of petroleum products, protection of international trade documents, and coordination of purchasing and bidding activities for granting oil exploration rights to petroleum exploration and development companies. Finally, we present open challenges acting as future research directions.


2021 ◽  
pp. 239496432110320
Author(s):  
Francesca Loia ◽  
Vincenzo Basile ◽  
Nancy Capobianco ◽  
Roberto Vona

Over the years, value co-creation practices have become increasingly more important by supporting collaborative interactions and the achievement of sustainable and mutual competitive advantage between the ecosystem’ actors. In this direction, the oil and gas industry is proposing a sustainable re-use of offshore platforms based on value co-creation and resources exchange between the actors involved. According to this consideration, this work aims at re-reading the decommissioning of offshore platforms in the light of value co-creation practices, trying to capture the factors that governments and companies can leverage to pursue a sustainable development of local communities. To reach this goal, this work follows an exploratory approach by using, in particular, the case study. Specifically, one of the most notably projects in the Italian context have been chosen, the Paguro platform, in order to provide empirical insights into the nature of these value co-creation processes. Five value co-creation practices have been identified which highlight the importance of synergistic efforts of institutions, companies and technology-based platforms for improving the ability to co-create and capture value in the process of decommissioning. This exploratory work establishes a foundation for future research, and offers theoretical and managerial guidance in this increasingly important area.


2021 ◽  
Vol 2 (1) ◽  
pp. 11-16
Author(s):  
Milena Vladimirovna Zagrebelskaya ◽  

The article providesthe main problems of oil and gas enterprises in the supply chains in the loop of procurement based onexample of Uzbekneftegaz. The possibilities of modern information logistics technologies in solving the above problems are reflected. The author's model of integratedplanning based on the logistics technology Sales & Operations Planning, taking into account the peculiarities of the oil and gas industry, is proposed for implementation at oil and gas enterprises in order to improve the efficiency of the planning and implementation of business processes.Key Words:logistics, supply chain, sales and operations planning, S&OP, oil and gas complex, integrated planning


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Kristin Yeoman ◽  
Mary B. O’Connor ◽  
Sara Sochor ◽  
Gerald Poplin

Abstract Background Transportation events are the most common cause of offshore fatalities in the oil and gas industry, of which helicopter accidents comprise the majority. Little is known about injury distributions in civilian helicopter crashes, and knowledge of injury distributions could focus research and recommendations for enhanced injury prevention and post-crash survival. This study describes the distribution of injuries among fatalities in Gulf of Mexico oil and gas industry-related helicopter accidents, provides a detailed injury classification to identify potential areas of enhanced safety design, and describes relevant safety features for mitigation of common injuries. Methods Decedents of accidents during 2004–2014 were identified, and autopsy reports were requested from responsible jurisdictions. Documented injuries were coded using the Abbreviated Injury Scale (AIS), and frequency and proportion of injuries by AIS body region and severity were calculated. Injuries were categorized into detailed body regions to target areas for prevention. Results A total of 35 autopsies were coded, with 568 injuries documented. Of these, 23.4% were lower extremity, 22.0% were thorax, 13.6% were upper extremity, and 13.4% were face injuries. Minor injuries were most prevalent in the face, neck, upper and lower extremities, and abdomen. Serious or worse injuries were most prevalent in the thorax (53.6%), spine (50.0%), head (41.7%), and external/other regions (75.0%). The most frequent injuries by detailed body regions were thoracic organ (23.0%), thoracic skeletal (13.3%), abdominal organ (9.6%), and leg injuries (7.4%). Drowning occurred in 13 (37.1%) of victims, and drowning victims had a higher proportion of moderate brain injuries (7.8%) and lower number of documented injuries (3.8) compared with non-drowning victims (2.9 and 9.4%, respectively). Conclusions Knowledge of injury distributions focuses and prioritizes the need for additional safety features not routinely used in helicopters. The most frequent injuries occurred in the thorax and lower extremity regions. Future research requires improved and expanded data, including collection of detailed data to allow characterization of both injury mechanism and distribution. Improved safety systems including airbags and helmets should be implemented and evaluated for their impact on injuries and fatalities.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4063 ◽  
Author(s):  
Log ◽  
Pedersen

Gas leaks in the oil and gas industry represent a safety risk as they, if ignited, may result in severe fires and/or explosions. Unignited, they have environmental impacts. This is particularly the case for methane leaks due to a significant Global Warming Potential (GWP). Since gas leak rates may span several orders of magnitude, that is, from leaks associated with potential major accidents to fugitive emissions on the order of 10−6 kg/s, it has been difficult to organize the leaks in an all-inclusive leak categorization model. The motivation for the present study was to develop a simple logarithmic table based on an existing consequence matrix for safety related incidents extended to include non-safety related fugitive emissions. An evaluation sheet was also developed as a guide for immediate risk evaluations when new leaks are identified. The leak rate table and evaluation guide were tested in the field at five land-based oil and gas facilities during Optical Gas Inspection (OGI) campaigns. It is demonstrated how the suggested concept can be used for presenting and analysing detected leaks to assist in Leak Detection and Repair (LDAR) programs. The novel categorization table was proven valuable in prioritizing repair of “super-emitter” components rather than the numerous minor fugitive emissions detected by OGI cameras, which contribute little to the accumulated emissions. The study was limited to five land based oil and gas facilities in Norway. However, as the results regarding leak rate distribution and “super-emitter” contributions mirror studies from other regions, the methodology should be generally applicable. To emphasize environmental impact, it is suggested to include leaking gas GWP in future research on the categorization model, that is, not base prioritization solely on leak rates. Research on OGI campaign frequency is recommended since frequent coarse campaigns may give an improved cost benefit ratio.


J ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 300-325 ◽  
Author(s):  
Lukman Adewale Ajao ◽  
James Agajo ◽  
Emmanuel Adewale Adedokun ◽  
Loveth Karngong

This research work proposes a method for the securing and monitoring of petroleum product distribution records in a decentralized ledger database using blockchain technology. The aim of using this technique is to secure the transaction of distributed ledgers in a database and to protect records from tampering, fraudulent activity, and corruption by the chain participants. The blockchain technology approach offers an efficient security measure and novel advantages, such as in the transaction existence and distribution ledger management between the depot, transporter, and retailing filling station. Others advantages are transparency, immunity to fraud, insusceptibility to tampering, and maintaining record order. The technique adopted for this secure distributed ledger database is crypto hash algorithm-1 (SHA-1)-based public permissioned blockchain and telematics, while this telematics approach is an embedded system integrated into an in-vehicle model for remote tracking of geolocation (using Global Positioning System (GPS)), monitoring, and far-off data acquisition in a real-time. The scope of the data in the secure distributed ledger database (using blockchain) developed are identification (ID) of the tanker operator, Depot name, Source station ID, Destination station ID, Petroleum product volume, Transporter ID, and Geographic automobiles location. This system proved to be efficient, secure, and easy to maintain as it does not permit any individual for records tampering, but supports agreement of ~75% of participants in the chain to make changes.


Author(s):  
Ivan S. Spiridonov ◽  
Marina S. Illarionova ◽  
Nikolay F. Ushmarin ◽  
Sergei I. Sandalov ◽  
Nikolay I. Kol'tsov

Rubber-technical products, which are used in the oil and gas industry, must have high thermal and aggressive strength. Rubbers based on butadiene-nitrile caoutchoucs are usually used for these purposes, since they have good operational properties. However, under the influence of elevated temperatures, the resistance of such rubbers to the action of petroleum products is reduced, as a result of which the physico-mechanical characteristics decrease. To improve the operational properties of rubber-technical products, various technological additives are introduced into the rubber mixtures. Such additives can be copolymers of ethylene with vinyl acetate(EVA), which increase the resistance of rubbers to action of high temperatures and aggressive media. This is due to the fact that these copolymers are well combined with butadiene-nitrile caoutchoucs, forming coordination bonds with rubber molecules, which contributes thereby increasing in the elastic-strength and performance properties of rubber. In this connection, the influence of EVA (sevillenes 11104-030, 11808-340 and MarPol 1802), differing in the content of vinyl acetate units, on the rheometric, physico-mechanical and operational properties of the rubber mixture based on butadiene-nitrile rubber in this paper was investigated. The study was carried out to improve the thermo-resistance of rubber used for the manufacture of oil and petrol resistant rubber-technical products for the oil and gas industry. The rubber mixture was prepared on laboratory rolls and standard samples were vulcanized in an electrically heated press. The study of rheometric properties has shown that EVA affect the characteristics of the vulcanization process of a rubber mixture. For vulcanizates, the influence of the content of EVA in a rubber mixture on the physical and mechanical properties was studied: the conditional tensile strength, elongation at break, tear resistance, rebound elasticity, Shore A hardness, relative compression deformation. The effect of the standard liquid ZHR-1 on the change in these properties, as well as the degree of swelling of the vulcanizates after their daily soaking in the standard liquid SZHR-1 and a mixture of isooctane + toluene, was studied. It has been established that vulcanizate of a rubber mixture containing sevilene 11808-340 is characterized by the best physico-mechanical and operational properties.


Sign in / Sign up

Export Citation Format

Share Document