scholarly journals Context-Aware and Class Imbalance Invariant Threat Severity Assessment for Heterogeneous IoT

Author(s):  
Nitish A ◽  
J. Hanumanthappa ◽  
Shiva Prakash S.P ◽  
Kirill Krinkin

<div>Due to demand for information ubiquity and large-scale automation, proliferating Internet-connected heterogeneous devices exhibit significant variations in data processing capacities, purposes, operating principles, underlying protocols, and dynamic contexts. As a result, adversarial entities exploit the increasing heterogeneous network (HetIoT) vulnerabilities, leading to frequent high-impact attacks due to anomalous device interactions and scarce knowledgebase. This paper presents a two-fold solution to the problem through a network intrusion detection and prevention framework for HetIoT, called \textit{HetIoT-NIDPS}. Firstly, we assign fault scores to the Expert-curated Knowledgebase (EK) framework, correlating with low-level alerts to assess threat severity and achieve context-awareness. Secondly, the proposed Beta distribution-based HetIoT traffic behavior approximation facilitates class imbalance invariance and improves classifier performance. Additionally, the HetIoT-NIDPS can detect zero-day attacks by identifying known attack variations upon encountering unseen traffic instances. Furthermore, the dynamic HetIoT contexts necessitate real-time threat assessment through online training---performed by analyzing small batches of network traffic samples. We propound the \textit{CorrELM} classifier based on the extreme learning machine algorithm and test the hypotheses on the Bot-IoT dataset. Finally, we prioritize the correlated alerts based on their severity, determined from root cause analysis and threat severity assessment tables. The results obtained prove that the proposed HetIoT-NIDPS framework is context-aware---producing reduced false alerts, class imbalance invariant---facilitating near real-time threat assessment with unbiased classifier performance, and generalizable---applicable to many NID datasets, which the existing techniques lack when combined.</div>

2021 ◽  
Author(s):  
Nitish A ◽  
J. Hanumanthappa ◽  
Shiva Prakash S.P ◽  
Kirill Krinkin

<div>Due to demand for information ubiquity and large-scale automation, proliferating Internet-connected heterogeneous devices exhibit significant variations in data processing capacities, purposes, operating principles, underlying protocols, and dynamic contexts. As a result, adversarial entities exploit the increasing heterogeneous network (HetIoT) vulnerabilities, leading to frequent high-impact attacks due to anomalous device interactions and scarce knowledgebase. This paper presents a two-fold solution to the problem through a network intrusion detection and prevention framework for HetIoT, called \textit{HetIoT-NIDPS}. Firstly, we assign fault scores to the Expert-curated Knowledgebase (EK) framework, correlating with low-level alerts to assess threat severity and achieve context-awareness. Secondly, the proposed Beta distribution-based HetIoT traffic behavior approximation facilitates class imbalance invariance and improves classifier performance. Additionally, the HetIoT-NIDPS can detect zero-day attacks by identifying known attack variations upon encountering unseen traffic instances. Furthermore, the dynamic HetIoT contexts necessitate real-time threat assessment through online training---performed by analyzing small batches of network traffic samples. We propound the \textit{CorrELM} classifier based on the extreme learning machine algorithm and test the hypotheses on the Bot-IoT dataset. Finally, we prioritize the correlated alerts based on their severity, determined from root cause analysis and threat severity assessment tables. The results obtained prove that the proposed HetIoT-NIDPS framework is context-aware---producing reduced false alerts, class imbalance invariant---facilitating near real-time threat assessment with unbiased classifier performance, and generalizable---applicable to many NID datasets, which the existing techniques lack when combined.</div>


Author(s):  
Hongli Wang ◽  
Bin Guo ◽  
Jiaqi Liu ◽  
Sicong Liu ◽  
Yungang Wu ◽  
...  

Deep Neural Networks (DNNs) have made massive progress in many fields and deploying DNNs on end devices has become an emerging trend to make intelligence closer to users. However, it is challenging to deploy large-scale and computation-intensive DNNs on resource-constrained end devices due to their small size and lightweight. To this end, model partition, which aims to partition DNNs into multiple parts to realize the collaborative computing of multiple devices, has received extensive research attention. To find the optimal partition, most existing approaches need to run from scratch under given resource constraints. However, they ignore that resources of devices (e.g., storage, battery power), and performance requirements (e.g., inference latency), are often continuously changing, making the optimal partition solution change constantly during processing. Therefore, it is very important to reduce the tuning latency of model partition to realize the real-time adaption under the changing processing context. To address these problems, we propose the Context-aware Adaptive Surgery (CAS) framework to actively perceive the changing processing context, and adaptively find the appropriate partition solution in real-time. Specifically, we construct the partition state graph to comprehensively model different partition solutions of DNNs by import context resources. Then "the neighbor effect" is proposed, which provides the heuristic rule for the search process. When the processing context changes, CAS adopts the runtime search algorithm, Graph-based Adaptive DNN Surgery (GADS), to quickly find the appropriate partition that satisfies resource constraints under the guidance of the neighbor effect. The experimental results show that CAS realizes adaptively rapid tuning of the model partition solutions in 10ms scale even for large DNNs (2.25x to 221.7x search time improvement than the state-of-the-art researches), and the total inference latency still keeps the same level with baselines.


Author(s):  
Nikolaos Papaoulakis ◽  
Nikolaos Doulamis ◽  
Charalampos Patrikakis ◽  
Emmanuel Protonotarios ◽  
Jonh Soldatos

2018 ◽  
Vol 68 (12) ◽  
pp. 2857-2859
Author(s):  
Cristina Mihaela Ghiciuc ◽  
Andreea Silvana Szalontay ◽  
Luminita Radulescu ◽  
Sebastian Cozma ◽  
Catalina Elena Lupusoru ◽  
...  

There is an increasing interest in the analysis of salivary biomarkers for medical practice. The objective of this article was to identify the specificity and sensitivity of quantification methods used in biosensors or portable devices for the determination of salivary cortisol and salivary a-amylase. There are no biosensors and portable devices for salivary amylase and cortisol that are used on a large scale in clinical studies. These devices would be useful in assessing more real-time psychological research in the future.


2020 ◽  
Vol 34 (10) ◽  
pp. 13849-13850
Author(s):  
Donghyeon Lee ◽  
Man-Je Kim ◽  
Chang Wook Ahn

In a real-time strategy (RTS) game, StarCraft II, players need to know the consequences before making a decision in combat. We propose a combat outcome predictor which utilizes terrain information as well as squad information. For training the model, we generated a StarCraft II combat dataset by simulating diverse and large-scale combat situations. The overall accuracy of our model was 89.7%. Our predictor can be integrated into the artificial intelligence agent for RTS games as a short-term decision-making module.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4736
Author(s):  
Sk. Tanzir Mehedi ◽  
Adnan Anwar ◽  
Ziaur Rahman ◽  
Kawsar Ahmed

The Controller Area Network (CAN) bus works as an important protocol in the real-time In-Vehicle Network (IVN) systems for its simple, suitable, and robust architecture. The risk of IVN devices has still been insecure and vulnerable due to the complex data-intensive architectures which greatly increase the accessibility to unauthorized networks and the possibility of various types of cyberattacks. Therefore, the detection of cyberattacks in IVN devices has become a growing interest. With the rapid development of IVNs and evolving threat types, the traditional machine learning-based IDS has to update to cope with the security requirements of the current environment. Nowadays, the progression of deep learning, deep transfer learning, and its impactful outcome in several areas has guided as an effective solution for network intrusion detection. This manuscript proposes a deep transfer learning-based IDS model for IVN along with improved performance in comparison to several other existing models. The unique contributions include effective attribute selection which is best suited to identify malicious CAN messages and accurately detect the normal and abnormal activities, designing a deep transfer learning-based LeNet model, and evaluating considering real-world data. To this end, an extensive experimental performance evaluation has been conducted. The architecture along with empirical analyses shows that the proposed IDS greatly improves the detection accuracy over the mainstream machine learning, deep learning, and benchmark deep transfer learning models and has demonstrated better performance for real-time IVN security.


Sign in / Sign up

Export Citation Format

Share Document