scholarly journals Conscious Machines for Autonomous Agents and Cybersecurity

Author(s):  
Alan Kadin

<div>Although consciousness has been difficult to define, most researchers in artificial intelligence would agree that AI systems to date have not exhibited anything resembling consciousness. But is a conscious machine possible in the near future? I suggest that a new definition of consciousness may provide a basis for developing a conscious machine. The key is pattern recognition of correlated events in time, leading to the identification of a unified self-agent. Such a conscious system can create a simplified virtual environment, revise it to reflect updated sensor inputs, and partition the environment into self, other agents, and relevant objects. It can track recent time sequences of events, predict future events based on models and patterns in memory, and attribute causality to events and agents. It can make rapid decisions based on incomplete data, and can dynamically learn new responses based on appropriate measures of success and failure. The central aspect of consciousness is the generation of a dynamic narrative, a real-time model of a self-agent pursuing goals in a virtual reality. A conscious machine of this type may be implemented using an appropriate neural network linked to episodic memories. Near-term applications may include autonomous vehicles and online agents for cybersecurity.</div><div>Paper presented at virtual IEEE International Conference on Rebooting Computing (ICRC), Nov. 2021. To be published in conference proceedings 2022.</div>

2021 ◽  
Author(s):  
Alan Kadin

<div>Although consciousness has been difficult to define, most researchers in artificial intelligence would agree that AI systems to date have not exhibited anything resembling consciousness. But is a conscious machine possible in the near future? I suggest that a new definition of consciousness may provide a basis for developing a conscious machine. The key is pattern recognition of correlated events in time, leading to the identification of a unified self-agent. Such a conscious system can create a simplified virtual environment, revise it to reflect updated sensor inputs, and partition the environment into self, other agents, and relevant objects. It can track recent time sequences of events, predict future events based on models and patterns in memory, and attribute causality to events and agents. It can make rapid decisions based on incomplete data, and can dynamically learn new responses based on appropriate measures of success and failure. The central aspect of consciousness is the generation of a dynamic narrative, a real-time model of a self-agent pursuing goals in a virtual reality. A conscious machine of this type may be implemented using an appropriate neural network linked to episodic memories. Near-term applications may include autonomous vehicles and online agents for cybersecurity.</div><div>Paper presented at virtual IEEE International Conference on Rebooting Computing (ICRC), Nov. 2021. To be published in conference proceedings 2022.</div>


2016 ◽  
Vol 9 (3) ◽  
pp. 256-265 ◽  
Author(s):  
Martin A Conway ◽  
Catherine Loveday ◽  
Scott N Cole

Remembering and imagining are intricately related, particularly in imagining the future: episodic future thinking. It is proposed that remembering the recent past and imagining the near future take place in what we term the remembering–imagining system. The remembering–imagining system renders recently formed episodic memories and episodic imagined near-future events highly accessible. We suggest that this serves the purpose of integrating past, current, and future goal-related activities. When the remembering–imagining system is compromised, following brain damage and in psychological illnesses, the future cannot be effectively imagined and episodic future thinking may become dominated by dysfunctional images of the future.


2021 ◽  
Vol 10 (2) ◽  
pp. 27
Author(s):  
Roberto Casadei ◽  
Gianluca Aguzzi ◽  
Mirko Viroli

Research and technology developments on autonomous agents and autonomic computing promote a vision of artificial systems that are able to resiliently manage themselves and autonomously deal with issues at runtime in dynamic environments. Indeed, autonomy can be leveraged to unburden humans from mundane tasks (cf. driving and autonomous vehicles), from the risk of operating in unknown or perilous environments (cf. rescue scenarios), or to support timely decision-making in complex settings (cf. data-centre operations). Beyond the results that individual autonomous agents can carry out, a further opportunity lies in the collaboration of multiple agents or robots. Emerging macro-paradigms provide an approach to programming whole collectives towards global goals. Aggregate computing is one such paradigm, formally grounded in a calculus of computational fields enabling functional composition of collective behaviours that could be proved, under certain technical conditions, to be self-stabilising. In this work, we address the concept of collective autonomy, i.e., the form of autonomy that applies at the level of a group of individuals. As a contribution, we define an agent control architecture for aggregate multi-agent systems, discuss how the aggregate computing framework relates to both individual and collective autonomy, and show how it can be used to program collective autonomous behaviour. We exemplify the concepts through a simulated case study, and outline a research roadmap towards reliable aggregate autonomy.


2021 ◽  
Vol 13 (8) ◽  
pp. 4264
Author(s):  
Matúš Šucha ◽  
Ralf Risser ◽  
Kristýna Honzíčková

Globally, pedestrians represent 23% of all road deaths. Many solutions to protect pedestrians are proposed; in this paper, we focus on technical solutions of the ADAS–Advanced Driver Assistance Systems–type. Concerning the interaction between drivers and pedestrians, we want to have a closer look at two aspects: how to protect pedestrians with the help of vehicle technology, and how pedestrians–but also car drivers–perceive and accept such technology. The aim of the present study was to analyze and describe the experiences, needs, and preferences of pedestrians–and drivers–in connection with ADAS, or in other words, how ADAS should work in such a way that it would protect pedestrians and make walking more relaxed. Moreover, we interviewed experts in the field in order to check if, in the near future, the needs and preferences of pedestrians and drivers can be met by new generations of ADAS. A combination of different methods, specifically, an original questionnaire, on-the-spot interviewing, and expert interviews, was used to collect data. The qualitative data was analyzed using qualitative text analysis (clustering and categorization). The questionnaire for drivers was answered by a total of 70 respondents, while a total of 60 pedestrians agreed to complete questionnaires concerning pedestrian safety. Expert interviews (five interviews) were conducted by means of personal interviews, approximately one hour in duration. We conclude that systems to protect pedestrians–to avoid collisions of cars with pedestrians–are considered useful by all groups, though with somewhat different implications. With respect to the features of such systems, the considerations are very heterogeneous, and experimentation is needed in order to develop optimal systems, but a decisive argument put forward by some of the experts is that autonomous vehicles will have to be programmed extremely defensively. Given this argument, we conclude that we will need more discussion concerning typical interaction situations in order to find solutions that allow traffic to work both smoothly and safely.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3904
Author(s):  
Jose Vera-Pérez ◽  
Javier Silvestre-Blanes ◽  
Víctor Sempere-Payá

Wireless sensor networks (WSNs) play a key role in the ecosystem of the Industrial Internet of Things (IIoT) and the definition of today’s Industry 4.0. These WSNs have the ability to sensor large amounts of data, thanks to their easy scalability. WSNs allow the deployment of a large number of self-configuring nodes and the ability to automatically reorganize in case of any change in the topology. This huge sensorization capacity, together with its interoperability with IP-based networks, allows the systems of Industry 4.0 to be equipped with a powerful tool with which to digitalize a huge amount of variables in the different industrial processes. The IEEE 802.15.4e standard, together with the access mechanism to the Time Slotted Channel Hopping medium (TSCH) and the dynamic Routing Protocol for Low-Power and Lossy Networks (RPL), allow deployment of networks with the high levels of robustness and reliability necessary in industrial scenarios. However, these configurations have some disadvantages in the deployment and synchronization phases of the networks, since the time it takes to synchronize the nodes is penalized compared to other solutions in which access to the medium is done randomly and without channel hopping. This article proposes an analytical model to characterize the behavior of this type of network, based on TSCH and RPL during the phases of deployment along with synchronization and connection to the RPL network. Through this model, validated by simulation and real tests, it is possible to parameterize different configurations of a WSN network based on TSCH and RPL.


2018 ◽  
Vol 6 (1) ◽  
pp. 91-114
Author(s):  
Stefan Hartmann

Abstract This paper investigates the alternation between two competing German future constructions, the werden + Infinitive construction and the futurate present, from a usage-based perspective. Two lines of evidence are combined: On the one hand, a pilot corpus study indicates that werden + Infinitive is more likely to be used for referring to distant-future events than to near-future events. However, syntactic factors seem to be at least as decisive as semantic ones for speakers’ choice between the two constructions. On the other hand, an experimental study taps into language users’ interpretation of sentences framed in one of the two constructions. It can be shown that the grammatical framing does not significantly affect participants’ estimates of the temporal distance of the events to which the stimuli sentences refer. This suggests that the meaning differences between the two constructions be more nuanced, e.g. pertaining to discourse-pragmatic functions.


2020 ◽  
Vol 17 (3-4) ◽  
Author(s):  
Béla Csitei

After clarifying the concepts of automated and autonomous vehicles, the purpose of the study is to investigate how reasonable the criminal sanction is arising from accidents caused by autonomous vehicles. The next question to be answered is that the definition of the crime according to the Hungarian law may be applied in case of traffic related criminal offences caused by automated and autonomous vehicles. During my research I paid special attention to two essential elements of criminal offence, namely the human act and guilt. Furthermore, I strived for finding solution for the next problem, as well: if the traffic related criminal offence is committed by driving an autonomous vehicle, how to define the subject of criminal liability.


2012 ◽  
Vol 8 (S289) ◽  
pp. 101-108 ◽  
Author(s):  
Carla Cacciari

AbstractRR Lyrae variables are the primary standard candles for old stellar populations, and the traditional first step in the definition of the distance scale. Their properties are known on the basis of well-established physical concepts and their calibration is based on several empirical methods. Both aspects are critically reviewed, and their application as distance indicators within the Galaxy and the Local Group are discussed, also in view of the observing facilities that will be available in the near future.


2021 ◽  
Author(s):  
Yuki Mori ◽  
Tsubasa Hirakawa ◽  
Takayoshi Yamashita ◽  
Hironobu Fujiyoshi

2020 ◽  
pp. 1-22
Author(s):  
Gracia Liu-Farrer

This introductory chapter provides an overview of Japan as an immigrant country. Japan has become an immigrant country de facto. Starting in the 1980s, to stave off economic decline caused by labor shortage and in the name of internationalization, Japan has tried different programs to bring in foreign workers. In 2012, Japan became one of the most liberal states in its policies for granting permanent residency to highly skilled migrants. As a result, the population of foreigners has been rising for the past three decades and is likely to increase significantly in the near future. Why, then, do both the Japanese government and people inside and outside Japan hesitate to accept the discourse of immigration and the reality of its transformation into an immigrant society? This hesitation has to do with Japan's ethno-nationalist self-identity and the widespread myth surrounding its monoethnic nationhood, on the one hand, and the conventional, albeit anachronistic, definition of “immigrant country” and the difficulty for people to associate an immigrant country with an ethno-nationalist one, on the other hand.


Sign in / Sign up

Export Citation Format

Share Document