scholarly journals Rage against the machine learning

2020 ◽  
Vol 14 (2 Abr-Jun) ◽  
pp. 06-23
Author(s):  
Arthur Coelho Bezerra ◽  
Marco Antônio de Almeida

Before being an exaltation to Luddites (the English workers from the 19th century who actually destroyed textile machinery as a form of protest) or to some sort of technophobic movement, the provocative pun contained in the title of this article carries a methodological proposal, in the field of critical theory of information, to build a diagnosis about the algorithmic filtering of information, which reveals itself to be a structural characteristic of the new regime of information that brings challenges to human emancipation. Our analysis starts from the concept of mediation to problematize the belief, widespread in much of contemporary society, that the use of machine learning and deep learning techniques for algorithmic filtering of big data will provide answers and solutions to all our questions and problems. We will argue that the algorithmic mediation of information on the internet, which is responsible for deciding which information we will have access to and which will remain invisible, is operated according to the economic interests of the companies that control the platforms we visit on the internet, acting as obstacle to the prospects of informational diversity and autonomy that are fundamental in free and democratic societies.

Author(s):  
Hari Kishan Kondaveeti ◽  
Gonugunta Priyatham Brahma ◽  
Dandhibhotla Vijaya Sahithi

Deep learning (DL), a part of machine learning (ML), comprises a contemporary technique for processing the images and analyzing the big data with promising outcomes. Deep learning methods are successfully being used in various sectors to gain better results. Agriculture sector is one of the sectors that could be benefitted from the deep learning techniques since the current agriculture techniques cannot keep up with the rapid growth in population. In this chapter, the recent trends in the applications of deep learning techniques in the agricultural sector and the survey of the research efforts that employ deep learning techniques are going to be discussed. Also, the models that are implemented are going to be analyzed and compared with the other existing models.


2019 ◽  
Vol 11 (1) ◽  
pp. 196 ◽  
Author(s):  
Jong Hwan Suh

In the digital age, the abundant unstructured data on the Internet, particularly online news articles, provide opportunities for identifying social problems and understanding social systems for sustainability. However, the previous works have not paid attention to the social-problem-specific perspectives of such big data, and it is currently unclear how information technologies can use the big data to identify and manage the ongoing social problems. In this context, this paper introduces and focuses on social-problem-specific key noun terms, namely SocialTERMs, which can be used not only to search the Internet for social-problem-related data, but also to monitor the ongoing and future events of social problems. Moreover, to alleviate time-consuming human efforts in identifying the SocialTERMs, this paper designs and examines the SocialTERM-Extractor, which is an automatic approach for identifying the key noun terms of social-problem-related topics, namely SPRTs, in a large number of online news articles and predicting the SocialTERMs among the identified key noun terms. This paper has its novelty as the first trial to identify and predict the SocialTERMs from a large number of online news articles, and it contributes to literature by proposing three types of text-mining-based features, namely temporal weight, sentiment, and complex network structural features, and by comparing the performances of such features with various machine learning techniques including deep learning. Particularly, when applied to a large number of online news articles that had been published in South Korea over a 12-month period and mostly written in Korean, the experimental results showed that Boosting Decision Tree gave the best performances with the full feature sets. They showed that the SocialTERMs can be predicted with high performances by the proposed SocialTERM-Extractor. Eventually, this paper can be beneficial for individuals or organizations who want to explore and use social-problem-related data in a systematical manner for understanding and managing social problems even though they are unfamiliar with ongoing social problems.


Author(s):  
Thiyagarajan P.

Digitalization is the buzz word today by which every walk of our life has been computerized, and it has made our life more sophisticated. On one side, we are enjoying the privilege of digitalization. On the other side, security of our information in the internet is the most concerning element. A variety of security mechanisms, namely cryptography, algorithms which provide access to protected information, and authentication including biometric and steganography, provide security to our information in the Internet. In spite of the above mechanisms, recently artificial intelligence (AI) also contributes towards strengthening information security by providing machine learning and deep learning-based security mechanisms. The artificial intelligence (AI) contribution to cyber security is important as it serves as a provoked reaction and a response to hackers' malicious actions. The purpose of this chapter is to survey recent papers which are contributing to information security by using machine learning and deep learning techniques.


2021 ◽  
Vol 31 (11) ◽  
pp. 2150173
Author(s):  
Miguel A. F. Sanjuán

Machine learning and deep learning techniques are contributing much to the advancement of science. Their powerful predictive capabilities appear in numerous disciplines, including chaotic dynamics, but they miss understanding. The main thesis here is that prediction and understanding are two very different and important ideas that should guide us to follow the progress of science. Furthermore, the important role played by nonlinear dynamical systems is emphasized for the process of understanding. The path of the future of science will be marked by a constructive dialogue between big data and big theory, without which we cannot understand.


Author(s):  
Myeong Sang Yu

The revolutionary development of artificial intelligence (AI) such as machine learning and deep learning have been one of the most important technology in many parts of industry, and also enhance huge changes in health care. The big data obtained from electrical medical records and digitalized images accelerated the application of AI technologies in medical fields. Machine learning techniques can deal with the complexity of big data which is difficult to apply traditional statistics. Recently, the deep learning techniques including convolutional neural network have been considered as a promising machine learning technique in medical imaging applications. In the era of precision medicine, otolaryngologists need to understand the potentialities, pitfalls and limitations of AI technology, and try to find opportunities to collaborate with data scientists. This article briefly introduce the basic concepts of machine learning and its techniques, and reviewed the current works on machine learning applications in the field of otolaryngology and rhinology.


Author(s):  
Amit Kumar Tyagi ◽  
Poonam Chahal

With the recent development in technologies and integration of millions of internet of things devices, a lot of data is being generated every day (known as Big Data). This is required to improve the growth of several organizations or in applications like e-healthcare, etc. Also, we are entering into an era of smart world, where robotics is going to take place in most of the applications (to solve the world's problems). Implementing robotics in applications like medical, automobile, etc. is an aim/goal of computer vision. Computer vision (CV) is fulfilled by several components like artificial intelligence (AI), machine learning (ML), and deep learning (DL). Here, machine learning and deep learning techniques/algorithms are used to analyze Big Data. Today's various organizations like Google, Facebook, etc. are using ML techniques to search particular data or recommend any post. Hence, the requirement of a computer vision is fulfilled through these three terms: AI, ML, and DL.


2021 ◽  
Author(s):  
Yew Kee Wong

In the information era, enormous amounts of data have become available on hand to decision makers. Big data refers to datasets that are not only big, but also high in variety and velocity, which makes them difficult to handle using traditional tools and techniques. Due to the rapid growth of such data, solutions need to be studied and provided in order to handle and extract value and knowledge from these datasets. Machine learning is a method of data analysis that automates analytical model building. It is a branch of artificial intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention. Such minimal human intervention can be provided using machine learning, which is the application of advanced deep learning techniques on big data. This paper aims to analyse some of the different machine learning and deep learning algorithms and methods, aswell as the opportunities provided by the AI applications in various decision making domains.


Inventions ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 8 ◽  
Author(s):  
Omid Ameri Sianaki ◽  
Ashkan Yousefi ◽  
Azadeh Tabesh ◽  
Mehregan Mahdavi

Dramatic changes in the way we collect and process data has facilitated the emergence of a new era by providing customised services and products precisely based on the needs of clients according to processed big data. It is estimated that the number of connected devices to the internet will pass 35 billion by 2020. Further, there has also been a massive escalation in the amount of data collection tools as Internet of Things devices generate data which has big data characteristics known as five V (volume, velocity, variety, variability and value). This article reviews challenges, opportunities and research trends to address the issues related to the data era in three industries including smart cities, healthcare and transportation. All three of these industries could greatly benefit from machine learning and deep learning techniques on big data collected by the Internet of Things, which is named as the internet of everything to emphasise the role of connected devices for data collection. In the smart grid portion of this paper, the recently developed deep reinforcement learning techniques and their applications in Smart Cities are also presented and reviewed.


2021 ◽  
pp. 1-25
Author(s):  
Guangjun Li ◽  
Preetpal Sharma ◽  
Lei Pan ◽  
Sutharshan Rajasegarar ◽  
Chandan Karmakar ◽  
...  

With the development of information technology, thousands of devices are connected to the Internet, various types of data are accessed and transmitted through the network, which pose huge security threats while bringing convenience to people. In order to deal with security issues, many effective solutions have been given based on traditional machine learning. However, due to the characteristics of big data in cyber security, there exists a bottleneck for methods of traditional machine learning in improving security. Owning to the advantages of processing big data and high-dimensional data, new solutions for cyber security are provided based on deep learning. In this paper, the applications of deep learning are classified, analyzed and summarized in the field of cyber security, and the applications are compared between deep learning and traditional machine learning in the security field. The challenges and problems faced by deep learning in cyber security are analyzed and presented. The findings illustrate that deep learning has a better effect on some aspects of cyber security and should be considered as the first option.


Sign in / Sign up

Export Citation Format

Share Document