scholarly journals Improvement of drag model for non-burning firebrand transport in Fire Dynamics Simulator

2009 ◽  
Vol 620-622 ◽  
pp. 417-420
Author(s):  
Hong Bo Ma ◽  
Jin Li ◽  
Jun Yang

HRB500 has been recognized an excellent material for structure. In this paper, Fire Dynamics Simulator (FDS) computer emulator method was adopted to analyze the bending performance and reinforcing ratio of HRB500 and conventional steel bar at the surface temperatures 600°C-900°C and center temperatures of 100°C-300°C underwent fire. The results showed that the HRB500 reinforced bar possessed superior seismic performance after the fire and this is helpful to the future application and design of steel for engineering.


2008 ◽  
Vol 46 (2) ◽  
pp. 291-306 ◽  
Author(s):  
Jianping Zhang ◽  
Michael Delichatsios ◽  
Matthieu Colobert

2006 ◽  
Vol 36 (11) ◽  
pp. 2894-2908 ◽  
Author(s):  
Ruiyu Sun ◽  
Mary Ann Jenkins ◽  
Steven K Krueger ◽  
William Mell ◽  
Joseph J Charney

Before using a fluid dynamics physically based wildfire model to study wildfire, validation is necessary and model results need to be systematically and objectively analyzed and compared to real fires, which requires suitable data sets. Observational data from the Meteotron experiment are used to evaluate the fire-plume properties simulated by two fluid dynamics numerical wildfire models, the Fire Dynamics Simulator (FDS) and the Clark coupled atmosphere–fire model. Comparisons based on classical plume theory between numerical model and experimental Meteotron results show that plume theory, because of its simplifying assumptions, is a fair but restricted rendition of important plume-averaged properties. The study indicates that the FDS, an explicit and computationally demanding model, produces good agreement with the Meteotron results even at a relatively coarse horizontal grid size of 4 m for the FDS, while the coupled atmosphere–fire model, a less explicit and less computationally demanding model, can produce good agreement, but that the agreement is sensitive to surface vertical-grid sizes and the method by which the energy released from the fire is put into the atmosphere.


2014 ◽  
Vol 955-959 ◽  
pp. 1840-1849
Author(s):  
Cherng Shing Lin ◽  
Kuo Da Chou

Taiwan is an island nation with numerous mountains and few plains. Consequently, the number of tunnel projects has gradually increased and tunnels are becoming longer. Because the number of large tunnels that exceed 1000 meters in length has increased, the effective escape and evacuation of people during a fire and the minimization of injury are crucial to fire protection engineers. For this study, an actual example of a fire that occurred in Hsuehshan Tunnel (12.9 kilometers and the longest tunnel in Southeast Asia) was used. A fire dynamics simulator (FDS) including numerical simulation software was applied to analyze this fire and the relevant information that was collected was compared and verified. The fire site simulation showed the escape and evacuation of people during the fire. Simulations of the original fire site and the possible escape time for people with various attributes were discussed to provide quantitative data and recommendations based on the analysis results, which can serve as a reference for fire protection engineering.


Author(s):  
Emanuel Ferreira ◽  
João Paulo C. Rodrigues ◽  
Leça Coelho

Neste artigo é analisado o risco de incêndio numa instalação de tratamento de resíduos sólidos urbanos, nomeadamente ao nível da sua fossa de deposição desses resíduos. Foram realizadas simulações do desenvolvimento do incêndio usando um modelo de duas zonas, o Consolidated Model of Fire and Smoke Transport (CFAST) e um modelo de campo, o Fire Dynamics Simulator and Smokeview (FDS-SMV), ambos do National Institute of Standards and Technology (NIST), sendo os resultados analisados e discutidos.


2019 ◽  
Vol 56 (3) ◽  
pp. 1315-1352 ◽  
Author(s):  
Roberto Bellas ◽  
Miguel A. Gómez ◽  
Arturo González-Gil ◽  
Jacobo Porteiro ◽  
José L. Míguez

2018 ◽  
Vol 54 ◽  
pp. 69-84 ◽  
Author(s):  
Ilyas Sellami ◽  
Brady Manescau ◽  
Khaled Chetehouna ◽  
Charles de Izarra ◽  
Rachid Nait-Said ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document