Iptek Bagi Masyarakat: Sumur Resapan Desa Tanjung Gusta untuk Pengendali Banjir

2017 ◽  
Vol 1 (2) ◽  
pp. 44
Author(s):  
Fahrizal Zulkarnain

The use of infiltration well as a flood controller can also be useful in anticipation of the decrease in the watertable in the dry season. Infiltration well also serves to maintain the ground water level, decrease groundwatercontamination, reduce groundwater degradation, help to overcome the lack of clean water, maintain water balance in thesoil, reduce the stagnant residential areas due to poorly functioning drainage system, and reduce soil erosion in someplaces due to lack of water infiltration into the soil. The water from the infiltration well will lead to a deep soil layer sothat the decrease of the ground water surface will not occur in a short time due to its existence. Community participationin implementing infiltration wells is very functional and will significantly reduce the impact of floods. In general, infiltration wells that can help reduce surface water are those that have a well dimension of 2 x 2 x 2 meters, thusaccommodating the water volume of  8 m3 expected to be impregnated into the ground as soon as possible to cope with flooding

2021 ◽  
Vol 2 (3) ◽  
pp. 33-39
Author(s):  
Nhi Thrinch ◽  
Honh Thung

Inundation and floods are caused by a combination of factors including lower rain catchment areas, decreasing infiltration rates, and an uneven distribution of rainfall throughout the year, which all combine to create flooding and inundation issues. The alternative option is to install an efficient drainage system that is ecologically friendly, since in addition to its role of accommodating and draining water, it also has the additional purpose of absorbing water into the subsurface soil layer. A pore hole is created at the bottom of the drainage channel in order for the water to be absorbed. There was a desire to investigate the impact of soil texture on the rate of infiltration, therefore this research was conducted. Three kinds of soil were utilized as infiltration medium, namely sandy loam, loam, and clayey loam, all of which were found in the surrounding area. In addition, there are three variants of hole spacing, namely 16 cm, 32 cm, and 48 cm, as well as three variations of flow rate, namely 400 cm3/s, 1500 cm3/s, and 2500 cm3/s, among others. As a consequence of laboratory studies, it has been shown that the impact of changes in flow rate on infiltration discharge is inversely proportional to the flow rate, i.e., the higher the flow rate, the smaller the infiltration discharge that occurs. The reason for this is because it is influenced by the flow velocity


Pondasi ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 94
Author(s):  
Andika Duwi Prasetyo ◽  
Agus Sarwo Edy Sudrajat

ABSTRAK Bencana banjir di Kota Semarang sudah tak asing lagi bagi masyarakat Semarang, khususnya pada wilayah timur Kota Semarang, bencana banjir di Kota Semarang disebabkan beberapa faktor antara lain curah hujan yang tinggi, permukaan tanah yang lebih rendah dibandingkan permukaan air laut, dan banyaknya sampah yang tersumbat pada saluran drainase. Bencana banjir yang disebabkan oleh beberapa faktor tersebut berdampak buruk bagi Kota Semarang khususnya pada Kelurahan Tlogosari, Kecamatan Pedurungan, dampak dari bencana banjir tersebut mengakibatkan kerusakan pada jalan, kemacetan, dan dapat menyebabkan penyakit pada lingkungan di wilayah deliniasi di Kelurahan Tlogosari, Kecamatan Pedurungan. Perlu adanya penanganan untuk mengatasi bencana banjir di wilayah deliniasi Kelurahan Tlogosari, Kecamatan Pedurungan, seperti upaya melakukan pembangunan sistem pengendali banjir dan pada sistem drainase, dan pembangunan sumur resapan air pada setiap permukiman, serta melakukan konservasi secara berkala untuk sungai maupun sistem drainase di wilayah deliniasi Kelurahan Tlogosari, Kecamatan Pedurungan. Kata Kunci : Identifikasi; Banjir; Tlogosari ABSTRACT The flood disaster in Semarang City is familiar to the people of Semarang, especially in the eastern area of Semarang City, the flood disaster in Semarang City is caused by several factors, including high rainfall, lower land surface than sea level, and the amount of clogged garbage. on the drainage channel. The flood disaster caused by several of these factors had a bad impact on the city of Semarang, especially in Tlogosari Village, Pedurungan District, the impact of the flood disaster caused damage to roads, congestion, and could cause disease in the environment in the delineation area in Tlogosari Village, Pedurungan District. There is a need for handling to overcome flood disasters in the delineation area of Tlogosari Village, Pedurungan District, such as efforts to build a flood control system and drainage system, and build water infiltration wells in each settlement, as well as carry out periodic conservation of rivers and drainage systems in the delineation area. Tlogosari Village, Pedurungan District.Keyword: Identification;Flood; Tlogosari


2020 ◽  
Author(s):  
Yiben Cheng ◽  
Hongbin Zhan ◽  
Wenbin Yang ◽  
Qunou Jiang ◽  
Yunqi Wang ◽  
...  

Abstract. Desertification in semi-arid regions is currently a global environmental and societal problem. This research attempts to understand whether a 40-year-old rain-feed Artamisia sphaerocephala Krasch sand-fixing land in Three North Shelterbelt Program (3NSP) of China can be developed sustainably or not, using a newly designed lysimeter to monitor the precipitation-induced deep soil recharge (DSR) at 220 cm depth. Evapotranspiration is calculated through a water balance equation when precipitation and soil moisture data are collected. Comparison of soil particle sizes and soil moisture distributions in artificial sand-fixing land and neighboring bare land is made to assess the impact of sand-fixing reforestation. Results show that such a sand-fixing reforestation results in a root system being mainly developed in the horizontal direction and the changed soil particle distribution. Specifically, the sandy soil with 50.53 % medium sand has been transformed into a sandy soil with 68.53 % fine sand. Within the Artamisia sphaerocephala Krasch sand-fixing experimental area, the DSR values in bare sand plot and Artemisia sphaerocephala Krasch plot are respectively 283.6 mm and 90.6 mm in wet years, reflecting a difference of more than three times. The deep soil layer moisture in semi-arid sandy land is largely replenished by precipitation-induced infiltration. The DSR values of bare sandy land plot and Artemisia sphaerocephala Krasch plot are respectively 51.6 mm and 2 mm in dry years, a difference of more than 25 times. The proportions of DSR reduced by Artemisia sphaerocephala Krasch is 68.06 % and 96.12 % in wet and dry years, respectively. This research shows that Artamisia sphaerocephala Krasch in semi-arid region can continue to grow and has the capacity of fixing sand. It consumes a large amount of precipitated water, and reduces the amount of DSR considerably.


2020 ◽  
Vol 24 (12) ◽  
pp. 5875-5890
Author(s):  
Yiben Cheng ◽  
Xinle Li ◽  
Yunqi Wang ◽  
Hongbin Zhan ◽  
Wenbin Yang ◽  
...  

Abstract. Desertification in semi-arid regions is currently a global environmental and societal problem. This research attempts to understand whether a 40-year-old rain-fed Artemisia sphaerocephala Krasch sand-fixing land as part of the Three North Shelterbelt Program (3NSP) of China can be developed sustainably or not using a newly designed lysimeter to monitor the precipitation-induced deep soil recharge (DSR) at 220 cm of depth. Evapotranspiration is calculated through a water balance equation when precipitation and soil moisture data are collected. A comparison of soil particle sizes and soil moisture distributions in artificial sand-fixing land and neighboring bare land is made to assess the impact of sand-fixing reforestation. Results show that such a sand-fixing reforestation results in a root system being mainly developed in the horizontal direction and a changed soil particle distribution. Specifically, the sandy soil with 50.53 % medium sand has been transformed into a sandy soil with 68.53 % fine sand. Within the Artemisia sphaerocephala Krasch sand-fixing experimental area, the DSR values in the bare sand plot and Artemisia sphaerocephala Krasch plot are respectively 283.6 and 90.6 mm in wet years, reflecting a difference of more than 3 times. The deep soil layer moisture in semi-arid sandy land is largely replenished by precipitation-induced infiltration. The DSR values of the bare sandy land plot and Artemisia sphaerocephala Krasch plot are respectively 51.6 and 2 mm in dry years, a difference of more than 25 times. The proportions of DSR reduced by Artemisia sphaerocephala Krasch are 68.06 % and 96.12 % in wet and dry years, respectively. This research shows that Artemisia sphaerocephala Krasch in semi-arid regions can continue to grow and has the capacity to fix sand. It consumes a large amount of precipitated water and reduces the amount of DSR considerably.


2020 ◽  
Author(s):  
Danish A Ahmed ◽  
Ali R Ansari ◽  
Mudassar Imran ◽  
Kamaludin Dingle ◽  
Naveed Ahmed ◽  
...  

Background: To mitigate the spread of the COVID-19 coronavirus, some countries have adopted more stringent non-pharmaceutical interventions in contrast to those widely used (for e.g. the state of Kuwait). In addition to standard practices such as enforcing curfews, social distancing, and closure of non-essential service industries, other non-conventional policies such as the total confinement of highly populated areas has also been implemented. Methods: In this paper, we model the movement of a host population using a mechanistic approach based on random walks, which are either diffusive or super-diffusive. Infections are realised through a contact process, whereby a susceptible host may be infected if in close spatial proximity of the infectious host. Our focus is only on the short-time scale prior to the infectious period, so that no further transmission is assumed. Results: We find that the level of infection depends heavily on the population dynamics, and increases in the case of slow population diffusion, but remains stable for a high or super-diffusive population. Also, we find that the confinement of homogeneous or overcrowded sub-populations has minimal impact in the short term. Conclusions: Our results indicate that on a short time scale, confinement restrictions or complete lock down of whole residential areas may not be effective. Finally, we discuss the possible implications of our findings for total confinement in the context of the current situation in Kuwait.


2020 ◽  
Author(s):  
Danish Ali Ahmed ◽  
Ali Ansari ◽  
Mudassar Imran ◽  
Kamal Dingle ◽  
Naveed Ahmed ◽  
...  

Abstract Background: To mitigate the spread of the COVID-19 coronavirus, some countries have adopted more stringent non-pharmaceutical interventions in contrast to those widely used (for e.g. the state of Kuwait). In addition to standard practices such as enforcing curfews, social distancing, and closure of non-essential service industries, other non-conventional policies such as the total confinement of highly populated areas has also been implemented. Methods: In this paper, we model the movement of a host population using a mechanistic approach based on random walks, which are either diffusive or super-diffusive. Infections are realised through a contact process, whereby a susceptible host may be infected if in close spatial proximity of the infectious host. Our focus is only on the short-time scale prior to the infectious period, so that no further transmission is assumed. Results: We find that the level of infection depends heavily on the population dynamics, and increases in the case of slow population diffusion, but remains stable for a high or super-diffusive population. Also, we find that the confinement of homogeneous or overcrowded sub-populations has minimal impact in the short term. Conclusions: Our results indicate that on a short time scale, confinement restrictions or complete lock down of whole residential areas may not be effective. Finally, we discuss the possible implications of our findings for total confinement in the context of the current situation in Kuwait.


2020 ◽  
Author(s):  
Hikaru Iida ◽  
Hiroaki Kato ◽  
Tomoki Shinozuka ◽  
Satoru Akaiwa ◽  
Tatsuya Yokoyama ◽  
...  

<p>Stemflow takes important role on the hydrological and chemical cycling in the rhizosphere because it brings intensive rainwater input to forest soil and enhances downward infiltration of rainwater along tree root network to deep soil horizon. However, there are few studies on the effects of stemflow in rainwater infiltration mechanisms by collecting of soil water. In this study, stemflow and soil water near the tree roots (Rd : root downslope) and far from the trunk (Bt : between trees) are collected from a cedar forest in Namie Town, Fukushima Prefecture, Japan. Samples were collected from June 24 to December 11, 2019 with a total precipitation of 1100 mm during the period. Water volume and dissolved <sup>137</sup>Cs concentration drived from the Fukushima Dai-ichi Nuclear Power Plant accident were measured. As a result, Rd which is located in neighbor of the trunk showed greater water infiltration flux and high dissolved <sup>137</sup>Cs concentration. The average amount of infiltration water which was normalized for open rainfall depth during the whole sampling period was 1.4 times and 3.0 times larger at 5 cm and 20 cm depth for the Rd than the Bt, the average dissolved <sup>137</sup>Cs concentration was 1.3 times and 1.7 times larger at 5 cm and 20 cm depth, respectively. This suggests that infiltration water flux and dissolved <sup>137</sup>Cs concentration can be increased due to contribution of stemflow input at the base of tree trunk. To determine the role of stemflow on rainwater infiltration flux and the concentration of dissolved elements in the rhzosphere, further analysis is required to clarify detailed infiltration mechanisms by using multiple tracer techniques such as stable isotopic composition of water and by collecting root oriented preferential flow.</p>


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jian-Ping Li ◽  
Hong-Bin Ma ◽  
Ying-Zhong Xie ◽  
Kai-Bo Wang ◽  
Kai-Yang Qiu

Abstract Fencing for grazing exclusion has been widely found to have an impact on grassland soil organic carbon (SOC) and total nitrogen (TN), but little is known about the impact of fenced grassland on the changes in deep soil carbon (C) and nitrogen (N) stocks in temperate grasslands. We studied the influence of 30 years fencing on vegetation and deep soil characteristics (0–500 cm) in the semi-arid grasslands of northern China. The results showed that fencing significantly increased the aboveground biomass (AGB), litter biomass (LB), total biomass, vegetation coverage and height, and soil water content and the SOC and TN in the deep soil. The belowground biomass (BGB) did not significantly differ between the fenced and grazed grassland. However, fencing significantly decreased the root/shoot ratio, forbs biomass, pH, and soil bulk density. Meanwhile, fencing has significantly increased the C and N stocks in the AGB and LB but not in the BGB. After 30 years of fencing, the C and N stocks significantly increased in the 0–500 cm soil layer. The accumulation of SOC mainly occurred in the deep layers (30–180 cm), and the accumulation of TN occurred in the soil layers of 0 to 60 cm and 160 to 500 cm. Our results indicate that fencing is an effective way to improve deep soil C and N stocks in temperate grassland of northwest China. There were large C and N stocks in the soil layers of 100 to 500 cm in the fenced grasslands, and their dynamics should not be ignored.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qingping Gou ◽  
Qingke Zhu

AbstractDeep soil moisture is a highly important source of water for vegetation in the semiarid Loess Plateau of China, vegetation restoration reduced the deep soil moisture, but how to better quantify the impact of vegetation restoration on deep soil moisture is lack of certain understanding. To explore the impact exerted by different types of vegetation on deep layers of the soil moisture, the 0–10 m soil moisture content profile was measured before and after the rainy season in Armeniaca sibirica, Robinia pseudoacacia, Populus simonii, Pinus tabuliformis, Hippophae rhamnoides and in natural grassland in Wuqi County in Shannxi Province. These results showed that the highest soil moisture in the shallow layers (0–200 cm) was exhibited in the P. simonii forest, which was followed by that in the natural grassland. Both of these results were significantly higher than that those of the A. sibirica, P. tabuliformis, H. rhamnoides and R. pseudoacacia forests. The soil moisture in the deep layer (200–1000 cm) of the natural grassland was significantly higher than that of the other vegetation types. The annual precipitation that recharges the depth of soil moisture was the highest in natural grassland and the lowest in P. simonii. The inter-annual soil moisture replenishment is primarily affected by rainfall and vegetation types. Compared with the natural grassland, the CSWSD (the comparison of the soil moisture storage deficit) of different vegetation types varies. In the shallow soil layer, P. simonii is the lowest, and R. pseudoacacia is the highest. In the deep soil layer, R. pseudoacacia and P. simonii are the highest; H. rhamnoides is the second highest, and A. sibirica and P. tabuliformis are the lowest. These results indicate that vegetation restoration can significantly reduce the amount of water in the deep layers of the soil. In the future vegetation restoration, we suggest emphasizing natural development more strongly, since it can better maintain the local vegetation stability and soil moisture balance.


Sign in / Sign up

Export Citation Format

Share Document