The Study of Current Status and Development Direction of Small Scale Cinema as the Local Cultural Space: The Case of Rural Cinema Pilot Scheme in the U.K.

2018 ◽  
Vol 36 (6) ◽  
pp. 119-127
Author(s):  
정지은 ◽  
정인선
2019 ◽  
Author(s):  
Biplab Kumar Shaha ◽  
Md. Mahmudul Alam ◽  
H. M. Rakibul Islam

Harvesting Giant Freshwater Prawn, Golda (Macrobrachium rosenbergii de Man 1879) in the Sundarnbans mangrove forest plays an important role in the economy of the country as well as the livelihood of local community. The study focused the economic assessment of small-scale artisanal Golda fishery. Overall the Hookline gear showed the best performance in terms of economic return. However, it was found to withstand a shock from 20% decrease in market prices or 30% fall in catch rate in terms of Return on investment, payback period and Benefit-cost ratio. Operating cost and fixed cost for Hookline fishery was the lowest and Khathijal was the highest. No significant variation (P<0.05) observed in the mean catch rate per trip boat-1 among the gears studied. Total revenue earned after completion a trip varied considerably between BDT 1,307 to 1,562. Yearly, total net revenue reached at the maximum by Hookline (BDT 38,506), followed by Chandijal (BDT 38,377) and the minimum by Khalpata (BDT 33,885). The findings of this study are supposed to be helpful for policy makers in improving the current status of Golda fishery and relevant human livelihood as well as conserving the Sundarbans Mangrove Ecosystem.


Author(s):  
Anand Srinivasan ◽  
José L. López-Ribot ◽  
Anand K. Ramasubramanian

Microfluidics is the manipulation and control of fluids in small scale, and has heralded a new age in science as evidenced by the rapid increase in the amount and quality of academic and industrial research output in this area in the recent times. Microfluidics has shown tremendous promise in both fundamental and applied research in the field of vascular bioengineering. In this review, we outline the basic principles of microfluidic flow and fabrication techniques, and describe the recent advances in the applications of microfluidic devices in diagnostic and prognostic vascular bioengineering. The field is still in its infancy and has a great potential for research and development as it matures to deliver commercially viable products. This review, focusing on the current status of microfluidic applications to diagnose and treat blood-related disorders, should be a valuable and opportune addition to the literature of interest to both academia and industry.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4903
Author(s):  
Yasutsugu Baba ◽  
Andante Hadi Pandyaswargo ◽  
Hiroshi Onoda

Forests cover two-thirds of Japan’s land area, and woody biomass is attracting attention as one of the most promising renewable energy sources in the country. The Feed-in Tariff (FIT) Act came into effect in 2012, and since then, woody biomass power generation has spread rapidly. Gasification power generation, which can generate electricity on a relatively small scale, has attracted a lot of attention. However, the technical issues of this technology remain poorly defined. This paper aims to clarify the problems of woody biomass gasification power generation in Japan, specifically on the challenges of improving energy utilization rate, the problem of controlling the moisture content, and the different performance of power generation facilities that uses different tree species. We also describe the technological development of a 2 MW updraft reactor for gasification and bio-oil coproduction to improve the energy utilization rate. The lower heating value of bio-oil, which was obtained in the experiment, was found to be about 70% of A-fuel oil. Among the results, the importance of controlling the moisture content of wood chips is identified from the measurement evaluation of a 0.36 MW-scale downdraft gasifier’s actual operation. We discuss the effects of tree species variation and ash on gasification power generation based on the results of pyrolysis analysis, industry analysis for each tree species. These results indicate the necessity of building a system specifically suited to Japan’s climate and forestry industry to allow woody biomass gasification power generation to become widespread in Japan.


Author(s):  
Andrey Beresnyak

AbstractWe review the current status of research in MHD turbulence theory and numerical experiments and their applications to astrophysics and solar science. We introduce general tools for studying turbulence, basic turbulence models, MHD equations and their wave modes. Subsequently, we cover the theories and numerics of Alfvénic turbulence, imbalanced turbulence, small-scale dynamos and models and numerics for supersonic MHD turbulence.


Author(s):  
Nickolas J. Themelis

This paper is based on data compiled in the course of developing, for InterAmerican Development Bank (IDB), a WTE Guidebook for managers and policymakers in the Latin America and Caribbean region. As part of this work, a list was compiled of nearly all plants in the world that thermally treat nearly 200 million tons of municipal solid wastes (MSW) and produce electricity and heat. An estimated 200 WTE facilities were built, during the first decade of the 21st century, mostly in Europe and Asia. The great majority of these plants use the grate combustion of as-received MSW and produce electricity. The dominance of the grate combustion technology is apparently due to simplicity of operation, high plant availability (>90%), and facility for training personnel at existing plants. Novel gasification processes have been implemented mostly in Japan but a compilation of all Japanese WTE facilities showed that 84% of Japan’s MSW is treated in grate combustion plants. Several small-scale WTE plants (<5 tons/hour) are operating in Europe and Japan and are based both on grate combustion and in implementing WTE projects. This paper is based on the sections of the WTE Guidebook that discuss the current use of WTE technology around the world. Since the beginning of history, humans have generated solid wastes and disposed them in makeshift waste dumps or set them on fire. After the industrial revolution, near the end of the 18th century, the amount of goods used and then discarded by people increased so much that it was necessary for cities to provide landfills and incinerators for disposing wastes. The management of urban, or municipal, solid wastes (MSW) became problematic since the middle of the 20th century when the consumption of goods, and the corresponding generation of MSW, increased by an order of magnitude. In response, the most advanced countries developed various means and technologies for dealing with solid wastes. These range from reducing wastes by designing products and packaging, to gasification technologies. Lists of several European plants are presented that co-combust medical wastes (average of 1.8% of the total feedstock) and wastewater plant residue (average of 2% of the feedstock).


Sign in / Sign up

Export Citation Format

Share Document