scholarly journals Evaluation of Moringa Peregrina (Forsk) Fiori, Leaf and Seed Extract Against Multidrug Resistant Strains of Bacteria and Fungus of Clinical Origin

2021 ◽  
Vol 3 (1) ◽  
pp. 20-26
Author(s):  
Suliman Mansour Albalawi ◽  
Abdulrahman K. Al-Asmari ◽  
Syed Rafatullah ◽  
Maysa Mahfoud

  The emergence of antibiotic resistant microorganism strains has become a critical concern in the treatment of infectious diseases and makes the search of an alternative therapy a must. The study was designed to evaluate the in vitro antimicrobial activities of the Moringa peregrina (MP) leave (MPL) and seed (MPS) extracts. Antimicrobial assays were performed using a microplate growth inhibition assay against 11 multidrug-resistant (MDR) strains. Following qualitative analysis, dose-response assays were performed using the MTT colorimetric assay. The results showed a strong correlation between the MPL and MPS extract concentration and growth inhibition (P<0.001). MP extract revealed a remarkable antimicrobial effect and inhibited the growth and survival of MDR pathogens which include Escherichia coli; Pseudomonas aeruginosa; Klebsiella pneumonia; Acinetobacter baumannii; Staphylococcus aureus between (88.6-94.7 %) and between (62.3- 88.7%) against Candida Kefyer; Candida parapsilosis; Candida albicans; Candida glabrata; Aspergillus flavus and Fusarium oxysporum. MIC50 ranging from ≤6.25 to 25 mg/mL. Acinetobacter baumannii and Pseudomonas aeruginosa were the most susceptible to MP extracts (MIC50 < 6.25 mg/mL). These results support the use of MP in Arab traditional medicine as natural antimicrobial agents. Additionally, the use of such naturally occurring adjuvant derived from medicinal plants can be used as an adjuvant with synthetic antibiotics to combat bacterial resistance and to enhance the antibacterial potential. Further studies are recommended on isolation and purification of novel antimicrobial molecules to treat the infections caused by microbes.  

Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 151
Author(s):  
Tatjana Kirtikliene ◽  
Aistė Mierauskaitė ◽  
Ilona Razmienė ◽  
Nomeda Kuisiene

Bacterial resistance to antimicrobial agents plays an important role in the treatment of bacterial infections in healthcare institutions. The spread of multidrug-resistant bacteria can occur during inter- and intra-hospital transmissions among patients and hospital personnel. For this reason, more studies must be conducted to understand how resistance occurs in bacteria and how it moves between hospitals by comparing data from different years and looking out for any patterns that might emerge. Multidrug-resistant (MDR) Acinetobacter spp. was studied at 14 healthcare institutions in Lithuania during 2014, 2016, and 2018 using samples from human bloodstream infections. In total, 194 isolates were collected and identified using MALDI-TOF and VITEK2 analyzers as Acinetobacter baumannii group bacteria. After that, the isolates were analyzed for the presence of different resistance genes (20 genes were analyzed) and characterized by using the Rep-PCR and MLVA (multiple-locus variable-number tandem repeat analysis) genotyping methods. The results of the study showed the relatedness of the different Acinetobacter spp. isolates and a possible circulation of resistance genes or profiles during the different years of the study. This study provides essential information, such as variability and diversity of resistance genes, genetic profiling, and clustering of isolates, to better understand the antimicrobial resistance patterns of Acinetobacter spp. These results can be used to strengthen the control of multidrug-resistant infections in healthcare institutions and to prevent potential outbreaks of this pathogen in the future.


2013 ◽  
Vol 6 (3) ◽  
pp. 179-185 ◽  
Author(s):  
M.A. De Francesco ◽  
G. Ravizzola ◽  
L. Peroni ◽  
C. Bonfanti ◽  
N. Manca

Author(s):  
Fateme DAVARZANI ◽  
Navid SAIDI ◽  
Saeed BESHARATI ◽  
Horieh SADERI ◽  
Iraj RASOOLI ◽  
...  

Background: Pseudomonas aeruginosa is one of the most common opportunistic bacteria causing nosocomial infections, which has significant resistance to antimicrobial agents. This bacterium is a biofilm and alginate producer. Biofilm increases the bacterial resistance to antibiotics and the immune system. Therefore, the present study was conducted to investigate the biofilm formation, alginate production and antimicrobial resistance patterns in the clinical isolates of P. aeruginosa. Methods: One hundred isolates of P. aeruginosa were collected during the study period (from Dec 2017 to Jul 2018) from different clinical samples of the patients admitted to Milad and Pars Hospitals at Tehran, Iran. Isolates were identified and confirmed by phenotypic and genotypic methods. Antimicrobial susceptibility was specified by the disk diffusion method. Biofilm formation and alginate production were measured by microtiter plate and carbazole assay, respectively. Results: Sixteen isolates were resistant to all the 12 studied antibiotics. Moreover, 31 isolates were MultidrugResistant (MDR). The highest resistance rate was related to ofloxacin (36 isolates) and the least resistance was related to piperacillin-tazobactam (21 isolates). All the isolates could produce the biofilm and alginate. The number of isolates producing strong, medium and weak biofilms was equal to 34, 52, and 14, respectively. Alginate production was more than 400 μg/ml in 39 isolates, 250-400 μg/ml in 51 isolates and less than 250 μg/ml in 10 isolates. Conclusion: High prevalence of MDR, biofilm formation, and alginate production were observed among the clinical isolates of P. aeruginosa. The results also showed a significant relationship between the amount of alginate production and the level of biofilm formation.


Author(s):  
Pratibha ◽  
Nesari Tanuja ◽  
Ghildiyal Shivani ◽  
Vandhana

The emergence of antibiotic resistance and the evolution of new strains of disease causing agents, are of highly concern to the global health community. Plants are potential source of antimicrobial agents. They have been used traditionally for prevention of infections caused by micro-organisms. Description of Krimighana herbs enumerated in Ayurveda classics is suggestive towards the importance of this group of medicine. Jambu (Syzygium cumini (L.) Skeels) is a member of Myrtaceae family. In Raja Nighantu it is mentioned that plant Jambu is having Kriminashaka property. It has been widely used medicine in the prevention of various ailments like cough, Dysentary, Diabetes, inflammation and ringworm. It is well established fact that geographical variations effects the potential and activity of medicinal herbs. Hence, the present study was undertaken to investigate Syzygium cumini procured from different geographical locations including Delhi, Rajasthan and Maharashtra for their potential activity against human infections caused by pathogens. Method The aqueous extract of Syzygium cumini of all the three areas was prepared. The activity of the plant extract was evaluated against nine bacterial pathogens and one fungal strain, which include Staphyllococcus aureus, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Klebsiella pneumonia and Candida albicans. The activity was carried out using Disk diffusion method. Result and Conclusion: All samples of Syzygium cumini showed potential antimicrobial activity against four pathogens including Staphyllococcus aureus, Streptococcus pyogenes, Pseudomonas aeruginosa and Candida albicans. MIC was also evaluated against the tested pathogenic strains. The sample from Maharashtra showed MIC i.e. 80µg, 40µg, 80µg against Staphyllococcus aureus, Streptococcus pyogenes and Candida albicans respectively which is less as compare to sample from Rajasthan and Delhi. Region wise sample from Maharashtra showed good ZOI and MIC.


2015 ◽  
Vol 59 (4) ◽  
pp. 2280-2285 ◽  
Author(s):  
Robert K. Flamm ◽  
Paul R. Rhomberg ◽  
Ronald N. Jones ◽  
David J. Farrell

ABSTRACTRX-P873 is a novel antibiotic from the pyrrolocytosine series which exhibits high binding affinity for the bacterial ribosome and broad-spectrum antibiotic properties. The pyrrolocytosines have shownin vitroactivity against multidrug-resistant Gram-negative and Gram-positive strains of bacteria known to cause complicated urinary tract, skin, and lung infections, as well as sepsis.Enterobacteriaceae(657),Pseudomonas aeruginosa(200), andAcinetobacter baumannii(202) isolates from North America and Europe collected in 2012 as part of a worldwide surveillance program were testedin vitroby broth microdilution using Clinical and Laboratory Standards Institute (CLSI) methodology. RX-P873 (MIC90, 0.5 μg/ml) was >32-fold more active than ceftazidime and inhibited 97.1% and 99.5% ofEnterobacteriaceaeisolates at MIC values of ≤1 and ≤4 μg/ml, respectively. There were only three isolates with an MIC value of >4 μg/ml (all were indole-positiveProtea). RX-P873 (MIC50/90, 2/4 μg/ml) was highly active againstPseudomonas aeruginosaisolates, including isolates which were nonsusceptible to ceftazidime or meropenem. RX-P873 was 2-fold less active againstP. aeruginosathan tobramycin (MIC90, 2 μg/ml; 91.0% susceptible) and colistin (MIC90, 2 μg/ml; 99.5% susceptible) and 2-fold more potent than amikacin (MIC90, 8 μg/ml; 93.5% susceptible) and meropenem (MIC90, 8 μg/ml; 76.0% susceptible). RX-P873, the most active agent againstAcinetobacter baumannii(MIC90, 1 μg/ml), was 2-fold more active than colistin (MIC90, 2 μg/ml; 97.0% susceptible) and 4-fold more active than tigecycline (MIC90, 4 μg/ml). This novel agent merits further exploration of its potential against multidrug-resistant Gram-negative bacteria.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 652 ◽  
Author(s):  
Angela Di Somma ◽  
Antonio Moretta ◽  
Carolina Canè ◽  
Arianna Cirillo ◽  
Angela Duilio

The increasing onset of multidrug-resistant bacteria has propelled microbiology research towards antimicrobial peptides as new possible antibiotics from natural sources. Antimicrobial peptides are short peptides endowed with a broad range of activity against both Gram-positive and Gram-negative bacteria and are less prone to trigger resistance. Besides their activity against planktonic bacteria, many antimicrobial peptides also show antibiofilm activity. Biofilms are ubiquitous in nature, having the ability to adhere to virtually any surface, either biotic or abiotic, including medical devices, causing chronic infections that are difficult to eradicate. The biofilm matrix protects bacteria from hostile environments, thus contributing to the bacterial resistance to antimicrobial agents. Biofilms are very difficult to treat, with options restricted to the use of large doses of antibiotics or the removal of the infected device. Antimicrobial peptides could represent good candidates to develop new antibiofilm drugs as they can act at different stages of biofilm formation, on disparate molecular targets and with various mechanisms of action. These include inhibition of biofilm formation and adhesion, downregulation of quorum sensing factors, and disruption of the pre-formed biofilm. This review focuses on the proprieties of antimicrobial and antibiofilm peptides, with a particular emphasis on their mechanism of action, reporting several examples of peptides that over time have been shown to have activity against biofilm.


2018 ◽  
Vol 62 (9) ◽  
Author(s):  
María Pérez-Varela ◽  
Jordi Corral ◽  
Jesús Aranda ◽  
Jordi Barbé

ABSTRACTAcinetobacter baumanniihas emerged as an important multidrug-resistant nosocomial pathogen. In previous work, we identified a putative MFS transporter, AU097_RS17040, involved in the pathogenicity ofA. baumannii(M. Pérez-Varela, J. Corral, J. A. Vallejo, S. Rumbo-Feal, G. Bou, J. Aranda, and J. Barbé, Infect Immun 85:e00327-17, 2017,https://doi.org/10.1128/IAI.00327-17). In this study, we analyzed the susceptibility to diverse antimicrobial agents ofA. baumanniicells defective in this transporter, referred to as AbaQ. Our results showed that AbaQ is mainly involved in the extrusion of quinolone-type drugs inA. baumannii.


Sign in / Sign up

Export Citation Format

Share Document