scholarly journals Multidrug-Resistant Acinetobacter baumannii Genetic Characterization and Spread in Lithuania in 2014, 2016, and 2018

Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 151
Author(s):  
Tatjana Kirtikliene ◽  
Aistė Mierauskaitė ◽  
Ilona Razmienė ◽  
Nomeda Kuisiene

Bacterial resistance to antimicrobial agents plays an important role in the treatment of bacterial infections in healthcare institutions. The spread of multidrug-resistant bacteria can occur during inter- and intra-hospital transmissions among patients and hospital personnel. For this reason, more studies must be conducted to understand how resistance occurs in bacteria and how it moves between hospitals by comparing data from different years and looking out for any patterns that might emerge. Multidrug-resistant (MDR) Acinetobacter spp. was studied at 14 healthcare institutions in Lithuania during 2014, 2016, and 2018 using samples from human bloodstream infections. In total, 194 isolates were collected and identified using MALDI-TOF and VITEK2 analyzers as Acinetobacter baumannii group bacteria. After that, the isolates were analyzed for the presence of different resistance genes (20 genes were analyzed) and characterized by using the Rep-PCR and MLVA (multiple-locus variable-number tandem repeat analysis) genotyping methods. The results of the study showed the relatedness of the different Acinetobacter spp. isolates and a possible circulation of resistance genes or profiles during the different years of the study. This study provides essential information, such as variability and diversity of resistance genes, genetic profiling, and clustering of isolates, to better understand the antimicrobial resistance patterns of Acinetobacter spp. These results can be used to strengthen the control of multidrug-resistant infections in healthcare institutions and to prevent potential outbreaks of this pathogen in the future.

2021 ◽  
Vol 3 (1) ◽  
pp. 20-26
Author(s):  
Suliman Mansour Albalawi ◽  
Abdulrahman K. Al-Asmari ◽  
Syed Rafatullah ◽  
Maysa Mahfoud

  The emergence of antibiotic resistant microorganism strains has become a critical concern in the treatment of infectious diseases and makes the search of an alternative therapy a must. The study was designed to evaluate the in vitro antimicrobial activities of the Moringa peregrina (MP) leave (MPL) and seed (MPS) extracts. Antimicrobial assays were performed using a microplate growth inhibition assay against 11 multidrug-resistant (MDR) strains. Following qualitative analysis, dose-response assays were performed using the MTT colorimetric assay. The results showed a strong correlation between the MPL and MPS extract concentration and growth inhibition (P<0.001). MP extract revealed a remarkable antimicrobial effect and inhibited the growth and survival of MDR pathogens which include Escherichia coli; Pseudomonas aeruginosa; Klebsiella pneumonia; Acinetobacter baumannii; Staphylococcus aureus between (88.6-94.7 %) and between (62.3- 88.7%) against Candida Kefyer; Candida parapsilosis; Candida albicans; Candida glabrata; Aspergillus flavus and Fusarium oxysporum. MIC50 ranging from ≤6.25 to 25 mg/mL. Acinetobacter baumannii and Pseudomonas aeruginosa were the most susceptible to MP extracts (MIC50 < 6.25 mg/mL). These results support the use of MP in Arab traditional medicine as natural antimicrobial agents. Additionally, the use of such naturally occurring adjuvant derived from medicinal plants can be used as an adjuvant with synthetic antibiotics to combat bacterial resistance and to enhance the antibacterial potential. Further studies are recommended on isolation and purification of novel antimicrobial molecules to treat the infections caused by microbes.  


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 652 ◽  
Author(s):  
Angela Di Somma ◽  
Antonio Moretta ◽  
Carolina Canè ◽  
Arianna Cirillo ◽  
Angela Duilio

The increasing onset of multidrug-resistant bacteria has propelled microbiology research towards antimicrobial peptides as new possible antibiotics from natural sources. Antimicrobial peptides are short peptides endowed with a broad range of activity against both Gram-positive and Gram-negative bacteria and are less prone to trigger resistance. Besides their activity against planktonic bacteria, many antimicrobial peptides also show antibiofilm activity. Biofilms are ubiquitous in nature, having the ability to adhere to virtually any surface, either biotic or abiotic, including medical devices, causing chronic infections that are difficult to eradicate. The biofilm matrix protects bacteria from hostile environments, thus contributing to the bacterial resistance to antimicrobial agents. Biofilms are very difficult to treat, with options restricted to the use of large doses of antibiotics or the removal of the infected device. Antimicrobial peptides could represent good candidates to develop new antibiofilm drugs as they can act at different stages of biofilm formation, on disparate molecular targets and with various mechanisms of action. These include inhibition of biofilm formation and adhesion, downregulation of quorum sensing factors, and disruption of the pre-formed biofilm. This review focuses on the proprieties of antimicrobial and antibiofilm peptides, with a particular emphasis on their mechanism of action, reporting several examples of peptides that over time have been shown to have activity against biofilm.


2020 ◽  
Vol 117 (37) ◽  
pp. 22967-22973
Author(s):  
Amanda C. Zangirolami ◽  
Lucas D. Dias ◽  
Kate C. Blanco ◽  
Carolina S. Vinagreiro ◽  
Natalia M. Inada ◽  
...  

Hospital-acquired infections are a global health problem that threatens patients’ treatment in intensive care units, causing thousands of deaths and a considerable increase in hospitalization costs. The endotracheal tube (ETT) is a medical device placed in the patient’s trachea to assist breathing and delivering oxygen into the lungs. However, bacterial biofilms forming at the surface of the ETT and the development of multidrug-resistant bacteria are considered the primary causes of ventilator-associated pneumonia (VAP), a severe hospital-acquired infection for significant mortality. Under these circumstances, there has been a need to administrate antibiotics together. Although necessary, it has led to a rapid increase in bacterial resistance to antibiotics. Therefore, it becomes necessary to develop alternatives to prevent and combat these bacterial infections. One possibility is to turn the ETT itself into a bactericide. Some examples reported in the literature present drawbacks. To overcome those issues, we have designed a photosensitizer-containing ETT to be used in photodynamic inactivation (PDI) to avoid bacteria biofilm formation and prevent VAP occurrence during tracheal intubation. This work describes ETT’s functionalization with curcumin photosensitizer, as well as its evaluation in PDI against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. A significant photoinactivation (up to 95%) against Gram-negative and Gram-positive bacteria was observed when curcumin-functionalized endotracheal (ETT-curc) was used. These remarkable results demonstrate this strategy’s potential to combat hospital-acquired infections and contribute to fighting antimicrobial resistance.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1587
Author(s):  
Feng Wang ◽  
Xiaohang Liu ◽  
Zhengyu Deng ◽  
Yao Zhang ◽  
Xinyu Ji ◽  
...  

With the increasing spread of multidrug-resistant bacterial pathogens, it is of great importance to develop alternatives to conventional antibiotics. Here, we report the generation of a chimeric phage lysin, MLTphg, which was assembled by joining the lysins derived from Meiothermus bacteriophage MMP7 and Thermus bacteriophage TSP4 with a flexible linker via chimeolysin engineering. As a potential antimicrobial agent, MLTphg can be obtained by overproduction in Escherichia coli BL21(DE3) cells and the following Ni-affinity chromatography. Finally, we recovered about 40 ± 1.9 mg of MLTphg from 1 L of the host E. coli BL21(DE3) culture. The purified MLTphg showed peak activity against Staphylococcus aureus ATCC6538 between 35 and 40 °C, and maintained approximately 44.5 ± 2.1% activity at room temperature (25 °C). Moreover, as a produced chimera, it exhibited considerably improved bactericidal activity against Staphylococcus aureus (2.9 ± 0.1 log10 reduction was observed upon 40 nM MLTphg treatment at 37 °C for 30 min) and also a group of antibiotic-resistant bacteria compared to its parental lysins, TSPphg and MMPphg. In the current age of growing antibiotic resistance, our results provide an engineering basis for developing phage lysins as novel antimicrobial agents and shed light on bacteriophage-based strategies to tackle bacterial infections.


2020 ◽  
Vol 8 (5) ◽  
pp. 639 ◽  
Author(s):  
Alexis Simons ◽  
Kamel Alhanout ◽  
Raphaël E. Duval

Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.


2008 ◽  
Vol 52 (8) ◽  
pp. 2898-2904 ◽  
Author(s):  
Tze-Peng Lim ◽  
Kimberly R. Ledesma ◽  
Kai-Tai Chang ◽  
Jing-Guo Hou ◽  
Andrea L. Kwa ◽  
...  

ABSTRACT Treatment of multidrug-resistant bacterial infections poses a therapeutic challenge to clinicians; combination therapy is often the only viable option for multidrug-resistant infections. A quantitative method was developed to assess the combined killing abilities of antimicrobial agents. Time-kill studies (TKS) were performed using a multidrug-resistant clinical isolate of Acinetobacter baumannii with escalating concentrations of cefepime (0 to 512 mg/liter), amikacin (0 to 256 mg/liter), and levofloxacin (0 to 64 mg/liter). The bacterial burden data in single and combined (two of the three agents with clinically achievable concentrations in serum) TKS at 24 h were mathematically modeled to provide an objective basis for comparing various antimicrobial agent combinations. Synergy and antagonism were defined as interaction indices of <1 and >1, respectively. A hollow-fiber infection model (HFIM) simulating various clinical (fluctuating concentrations over time) dosing exposures was used to selectively validate our quantitative assessment of the combined killing effect. Model fits in all single-agent TKS were satisfactory (r 2 > 0.97). An enhanced combined overall killing effect was seen in the cefepime-amikacin combination (interactive index, 0.698; 95% confidence interval [CI], 0.675 to 0.722) and the cefepime-levofloxacin combination (interactive index, 0.929; 95% CI, 0.903 to 0.956), but no significant difference in the combined overall killing effect for the levofloxacin-amikacin combination was observed (interactive index, 0.994; 95% CI, 0.982 to 1.005). These assessments were consistent with observations in HFIM validation studies. Our method could be used to objectively rank the combined killing activities of two antimicrobial agents when used together against a multidrug-resistant A. baumannii isolate. It may offer better insights into the effectiveness of various antimicrobial combinations and warrants further investigations.


2016 ◽  
Vol 29 (2) ◽  
pp. 450-457 ◽  
Author(s):  
CARLA SILVA DA SILVEIRA ◽  
OSCARINA VIANA DE SOUSA ◽  
NORMA SUELY EVANGELISTA-BARRETO

ABSTRACT: In recent years, the emergence of resistant pathogens has complicated the treatment of bacterial infections in livestock production as well as in the medical field, due to the development of resistance mechanisms by microorganisms. The objective of this study was to delineate the antimicrobial resistance profile of Salmonella spp. strains isolated from bivalve mollusks (oysters and mussels) and from estuarine environment water of two regions of Bahia, Brazil. Twenty-seven strains, 12 isolated from bivalve mollusks and 15 from estuarine water, were tested. Eight antimicrobial agents (phenicol, beta-lactams, tetracyclines, quinolones and fluoroquinolones classes) were used for a susceptibility test, Minimum Inhibitory Concentration (MIC) and extended-spectrum beta-lactamases (ESBLs) production. Isolates showed high susceptibility to the classes of antimicrobial agents tested, with resistance only to nalidixic acid (27%), ampicillin (25%) and tetracycline (25%). Bacterial resistance was of chromosomal origin and the multidrug resistance index (MAR) among isolates of shellfish (mussels in natura) was 0.25. The MIC was found to be 100 µg/mL, 500 µg/mL and 350 µg/mL to nalidixic acid, ampicillin and tetracycline, respectively. None of the isolates presented ESBLs production. The presence of multidrug-resistant and high MIC Salmonella spp. is being conveyed in extraction areas of bivalve mollusks in the State of Bahia, Brazil.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Aseer Manilal ◽  
Kuzhunellil Raghavanpillai Sabu ◽  
Melat Woldemariam ◽  
Addis Aklilu ◽  
Gelila Biresaw ◽  
...  

Background. In developing countries, the prevalence of bacterial infections is quite rampant due to several factors such as the HIV/AIDS pandemic, lack of hygiene, overcrowding, and resistance to conventional antimicrobials. Hence the use of plant-based antimicrobial agents could provide a low-cost alternative therapy. Rosmarinus officinalis is reputed as a medicinal plant in Ethiopia; however, its antibacterial activity against many of the clinical isolates remains overlooked. Methods. Tender foliage of R. officinalis was collected and extracted in ethanol (EtOH) and evaluated for their antimicrobial activity against ten multidrug-resistant (MDR) clinical isolates, human type culture pathogens, and meat-borne bacterial isolates by employing agar well diffusion assay. Results. EtOH extract of R. officinalis efficiently subdued the growth of all tested MDR clinical isolates in varying degrees. Salmonella sp. and Staphylococcus aureus were found to be the most sensitive clinical isolates. Likewise, it efficiently repressed the growth of meat-borne pathogens, particularly, S. aureus and Salmonella sp. showing its potentiality to be used as a natural antibacterial agent in the meat processing industry. The mechanism of antibiosis of plant extract against meat-borne pathogens is inferred to be bactericidal. Chemical constituents of the crude plant extract were analysed by Gas Chromatography-Mass Spectroscopy (GC-MS), Fourier Transform Infrared (FT-IR), and UV-visible spectroscopy showing genkwanin (26%), camphor (13%), endo-borneol (13%), alpha-terpineol (12%), and hydroxyhydrocaffeic acid (13%) as the major compounds. Conclusion. Overall results of the present study conclude that R. officinalis could be an excellent source of antimicrobial agents for the management of drug-resistant bacteria as well as meat-borne pathogens.


Author(s):  
Sonali Gangwar ◽  
Keerti Kaushik ◽  
Maya Datt Joshi

Serious infectious diseases are caused by bacterial pathogens that represents a serious public health concern. Antimicrobial agents are indicated for the treatment bacterial infections.Various bacteria carries several resistance genes also called multidrug resistant (MDR). Multidrug resistant organisms have emerged not only in the hospital environment but are now often identified in community settings, suggesting the reservoirs of antibiotic resistant bacteria are present outside the hospital. Drug resistant bacteria that are selected with a single drug are also frequently multi-drug resistant against multiple structurally different drugs, thus confounding the chemotherapeutic efficacy of infectious disease caused by such pathogenic variants. The molecular mechanisms by which bacteria have common resistance to antibiotics are diverse and complex. This review highlights the mechanism of bacterial resistance to antimicrobials.


2021 ◽  
Author(s):  
Xiaoqing Wang ◽  
Belinda Loh ◽  
Yunsong Yu ◽  
Xiaoting Hua ◽  
Sebastian Leptihn

Few emergency-use antibiotics remain for the treatment of multidrug-resistant bacterial infections. Infections with resistant bacteria are becoming increasingly common. Phage therapy has reemerged as a promising strategy to treat such infections, as microbial viruses are not affected by bacterial resistance to antimicrobial compounds. However, phage therapy is impeded by rapid emergence of phage-resistant bacteria during therapy. In this work, we studied phage-resistance of colistin sensitive and resistant A. baumannii strains. Using whole genome sequencing, we determined that phage resistant strains displayed mutations in genes that alter the architecture of the bacterial envelope. In contrast to previous studies where phage-escape mutants showed decreased binding of phages to the bacterial envelope, we obtained several not uninfectable isolates that allowed similar phage adsorption compared to the susceptible strain. When phage-resistant bacteria emerged in the absence of antibiotics, we observed that the colistin resistance levels often decreased, while the antibiotic resistance mechanism per se remained unaltered. In particular the two mutated genes that conveyed phage resistance, a putative amylovoran- biosynthesis and a lipo-oligosaccharide (LOS) biosynthesis gene, impact colistin resistance as the mutations increased sensitivity to the antibiotic.


Sign in / Sign up

Export Citation Format

Share Document