scholarly journals ENHANCED SOFT COMPUTING APPROACHES FOR INTRUSION DETECTION SCHEMES IN SOCIAL MEDIA NETWORKS

2019 ◽  
Vol 2019 (2) ◽  
pp. 69-79 ◽  
Author(s):  
Dr. Sathesh A.

The soft computing methods play a vital role in identifying the malicious activities in the social network. The low cost solutions and the robustness provided by the soft computing in the identifying the unwanted activities make it a predominant area of research. The paper combines the soft computing techniques and frames an enhanced soft computing approach to detect the intrusion that cause security issues in the social network. The proffered method of the paper employs the enhanced soft computing technique that combines the fuzzy logic, decision tree, K means -EM and the machine learning in preprocessing, feature reduction, clustering and classification respectively to develop a security approach that is more effective than the traditional computations in identifying the misuse in the social networks. The intrusion detection system developed using the soft computing approach is tested using the KDD-NSL and the DARPA dataset to note down the security percentage, time utilization, cost and compared with the other traditional methods.

2013 ◽  
Vol 832 ◽  
pp. 260-265
Author(s):  
Norlina M. Sabri ◽  
Mazidah Puteh ◽  
Mohamad Rusop Mahmood

This paper presents an overview of research works on the utilizing of soft computing in the optimization of process parameters and in the prediction of thin film properties in sputtering processes. The papers from this review were obtained from relevant databases and from various scientific journals. The papers collected were published from 2008 to 2012. The focus of the review is to provide an outlook on the utilization of soft computing techniques in sputtering processes. Based on the review, the soft computing techniques which have been applied so far are ANN, GA and Fuzzy Logic. The first finding of this review is that soft computing technique is a promising and more reliable approach to optimize and predict process parameters compared to the traditional methods. The second finding is that the utilizing of soft computing techniques in sputtering processes are still limited and still in exploratory phase as they have not yet been extensively and stably applied. The techniques applied are also limited to ANN, GA and Fuzzy, whereas the exploration into other techniques is also necessary to be conducted in order to seek the most reliable technique and so as to expand the application of soft computing approach. Future research could focus on the exploration of other soft computing techniques for optimization in order to find the best optimization techniques based on the specific processes.


Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 327 ◽  
Author(s):  
Muhammad Afzal Awan ◽  
Tahir Mahmood

Optimal energy extraction under partial shading conditions from a photovoltaic (PV) array is particularly challenging. Conventional techniques fail to achieve the global maximum power point (GMPP) under such conditions, while soft computing techniques have provided better results. The main contribution of this paper is to devise an algorithm to track the GMPP accurately and efficiently. For this purpose, a ten check (TC) algorithm was proposed. The effectiveness of this algorithm was tested with different shading patterns. Results were compared with the top conventional algorithm perturb and observe (P&O) and the best soft computing technique flower pollination algorithm (FPA). It was found that the proposed algorithm outperformed them. Analysis demonstrated that the devised algorithm achieved the GMPP efficiently and accurately as compared to the P&O and the FPA algorithms. Simulations were performed in MATLAB/Simulink.


Author(s):  
Aishwarya Priyadarshini ◽  
Sanhita Mishra ◽  
Debani Prasad Mishra ◽  
Surender Reddy Salkuti ◽  
Ramakanta Mohanty

<p>Nowadays, fraudulent or deceitful activities associated with financial transactions, predominantly using credit cards have been increasing at an alarming rate and are one of the most prevalent activities in finance industries, corporate companies, and other government organizations. It is therefore essential to incorporate a fraud detection system that mainly consists of intelligent fraud detection techniques to keep in view the consumer and clients’ welfare alike. Numerous fraud detection procedures, techniques, and systems in literature have been implemented by employing a myriad of intelligent techniques including algorithms and frameworks to detect fraudulent and deceitful transactions. This paper initially analyses the data through exploratory data analysis and then proposes various classification models that are implemented using intelligent soft computing techniques to predictively classify fraudulent credit card transactions. Classification algorithms such as K-Nearest neighbor (K-NN), decision tree, random forest (RF), and logistic regression (LR) have been implemented to critically evaluate their performances. The proposed model is computationally efficient, light-weight and can be used for credit card fraudulent transaction detection with better accuracy.</p>


2021 ◽  
Vol 14 (1) ◽  
pp. 192-202
Author(s):  
Karrar Alwan ◽  
◽  
Ahmed AbuEl-Atta ◽  
Hala Zayed ◽  
◽  
...  

Accurate intrusion detection is necessary to preserve network security. However, developing efficient intrusion detection system is a complex problem due to the nonlinear nature of the intrusion attempts, the unpredictable behaviour of network traffic, and the large number features in the problem space. Hence, selecting the most effective and discriminating feature is highly important. Additionally, eliminating irrelevant features can improve the detection accuracy as well as reduce the learning time of machine learning algorithms. However, feature reduction is an NPhard problem. Therefore, several metaheuristics have been employed to determine the most effective feature subset within reasonable time. In this paper, two intrusion detection models are built based on a modified version of the firefly algorithm to achieve the feature selection task. The first and, the second models have been used for binary and multiclass classification, respectively. The modified firefly algorithm employed a mutation operation to avoid trapping into local optima through enhancing the exploration capabilities of the original firefly. The significance of the selected features is evaluated using a Naïve Bayes classifier over a benchmark standard dataset, which contains different types of attacks. The obtained results revealed the superiority of the modified firefly algorithm against the original firefly algorithm in terms of the classification accuracy and the number of selected features under different scenarios. Additionally, the results assured the superiority of the proposed intrusion detection system against other recently proposed systems in both binary classification and multi-classification scenarios. The proposed system has 96.51% and 96.942% detection accuracy in binary classification and multi-classification, respectively. Moreover, the proposed system reduced the number of attributes from 41 to 9 for binary classification and to 10 for multi-classification.


Sign in / Sign up

Export Citation Format

Share Document