scholarly journals Design of Compact MIMO Multiband Antenna for Wireless Radio Communication Application

2021 ◽  
Vol 3 (3) ◽  
pp. 170-181
Author(s):  
C. Anand

Slot and patch modification for the design of a compact multiband antenna with Multi-Input-Multi-Output (MIMO) functionality is proposed in this paper. At various frequency bands, the antenna performance is obtained by modification and addition of slot and patch shapes in the design of the compact MIMO multiband antenna. Addition of slots or patches is done separately in the already existing multiband antenna designs. Whereas in this work, the addition of slot and patch are combined. Arlon Diclad 880 with a dielectric constant of 2.17 - 2.2 (εr) and height 0.75mm is used for the antenna design. The MIMO multiband antenna with the dimension of 12.5 mm × 7.5 mm is designed. On various millimeter-wave frequency bands ranging from 20 GHz to 40 GHz, the MIMO antenna can function as observed in the results of simulation and evaluation. This work shows that microstrip antennas can be added with slots and patches during their design and development, thereby enabling the antenna to operate under multiple frequency bands.

2014 ◽  
Vol 548-549 ◽  
pp. 780-784
Author(s):  
Jesada Sivaraks ◽  
Settapong Malisuwan

A compressed multiple band loop antenna that has multiple superimposed compressed loops. Each compressed loop is formed from numerous segments arrayed in multiple diverse directions so that the enclosed area of that loop and the overall size of the antenna are decreased. Multiple loops are arrayed and superimposed to provide multiple frequency bands of operation and are used to broaden the useful bandwidth of individual-bands. The small size of the compressed antenna facilitates its use in small mobile communications devices requiring internal antennas that operate in close proximity to conductive surfaces. Multiple loops are arrayed in several configurations that include nested and non-nested loops as well as closely located and spatially separated superimposed loops.


2018 ◽  
Vol 10 (2) ◽  
pp. 15-21
Author(s):  
Aprinal Adila Asril ◽  
Lifwarda Lifwarda ◽  
Yul Antonisfia

Microstrip antennas are very concerned shapes and sizes. Can be viewed in terms of simple materials, shapes, sizes and dimensions smaller antennae, the price of production is cheaper and able to provide a reasonably good performance, in addition to having many advantages, the microstrip antenna also has its drawbacks one of which is a narrow bandwidth. In this research will be designed a microstrip antenna bowtie which works at a frequency of 5.2 GHz which has a size of 68mm x 33mm groundplane. For the length and width of 33mm x 13mm patch. This antenna is designed on a printed cicuit board (PCB) FR4 epoxy with a dielectric constant of 4.7 and has a thickness of 1,6mm. This bowtie microstrip antenna design using IE3D software. This antenna has been simulated using IE3D software showed its resonance frequency is 5.270 GHz with a return loss -23 595 dB bandwidth of 230 MHz, VSWR 1,142, unidirectional radiation pattern and impedance 43,919Ω. The results of which have been successfully fabricated antenna with a resonant frequency of 5.21 GHz with a return loss -16.813 dB bandwidth of 79 MHz, VSWR 1.368, unidirectional radiation pattern, impedance 43,546Ω and HPBW 105 °.


2021 ◽  
Vol 13 (2) ◽  
pp. 33-44
Author(s):  
Yahieal Alnaiemy ◽  
Lajos Nagy

Our design for a novel UWB monopole antenna structure with reconfigurable band notch characteristics based on PIN diodes is presented in this paper. The proposed antenna is comprised of a modified circular patch and a partial ground plane. The band-notch characteristics are achieved by etching a slot on the partial ground plane and inserting three PIN diodes into the slots for adjusting the operating antenna bands. The reconfigurability is achieved by adding three PIN diodes to obtain eight states with UWB, dual and triple operating bands which can be obtained by changing the PIN state from ON to OFF, and vice versa. The proposed design shows a simple biasing process to switch the frequency bands with insignificant gain variation and low radiation efficiency reduction. The reconfigurability of the frequency is accomplished by adjusting the effective slot length through modifying the PIN diodes states at the desired operating bands. The desired operating frequency bands can be obtained by switching the diodes. A systematic parametric study based on a numerical analysis is invoked to verify and refine the proposed performance. The proposed antenna is fabricated on FR-4 substrate with dimensions of 50×60×1 mm3. The proposed antenna performance was tested experimentally and compared to the simulated results from CSTMW based on FIT. Experimental results were in concordance with simulated results. We found that the proposed antenna design had simple geometry and it was easy to control the frequency bands to suit the applications of WiMAX and WiFi systems.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Brahim Fady ◽  
Abdelwahed Tribak ◽  
Jaouad Terhzaz ◽  
Fatima Riouch

This paper presents a novel low-cost integrated multiband antenna design customized for smartwatch applications and wearable devices. The design consists in using a broadband planar patch antenna with circular microstrip lines and a miniaturized feeding-point with a structure of 30 × 30 × 1.6 mm3, and it is easy to deploy inside the smartwatch and cost-effective for the wearable device industry. The parametric study and final dimensions of the design and the measured results of the reflection and radiation pattern are discussed. The antenna with maximum gain up to 6.6 dBi and S11 up to −22 dB exhibits excellent performance for all the frequencies required in wearable systems such as 1.9 GHz, 2.3 GHz, 2.4 GHz, 2.6 GHz, 5.2 GHz, and 5.8 GHz. We drew a comparison between similar research and this work in terms of antenna performance. Furthermore, we investigate the specific absorption rate (SAR) performance of the antenna for the smartwatch application, using both human hand wrist multilayer and SAM head mouth models. The SAR results in different positions for all the frequencies are compared to the Federal Communication Commission (FCC) standards.


2019 ◽  
Vol 12 (1) ◽  
pp. 37-41
Author(s):  
A. Pramod Kumar

Abstract The objective of E-shaped patch antenna with hexagonal slot is to operate in the ISM band for different kind of applications, such as WLAN, GPS, and various modern wireless systems. The posit antenna is designed using FR4 substrate having a dielectric constant of 4.4 with a thickness of 1.6 mm. Probe feed technique is used for this antenna design. A parametric study was included to determine the effect of design approaches and the antenna performance. The realization of the designed antenna was analyzed in term of boost (gain), return loss, and radiation pattern. The design was upsurged to confirm the best achievable result. This antenna resonates at three different frequencies at 1.6 GHz, 3.24 GHz, and 5.6 GHz with a reflection coefficient less than -10 dB and VSWR<2.


2020 ◽  
Vol 19 ◽  

In this paper a full review and tutorial of Rectangular Microstrip Antennas (RMA) are carried out. The most important models of this sort of antennas are analyzed in this article and are present in a relevance order: transmission line, cavity model and full-wave. With the aim of supporting educational purposes and training in antenna design, some useful response plots are included and compared with full-wave simulations in both cases, before and after the structure optimization. The main results of this work were contrasted using returning losses and antenna directivity, for some practical variations of the dielectric constant and thickness of the substrate. Antenna patterns and return losses were also simulated and optimized using a full-wave simulation tool


Sign in / Sign up

Export Citation Format

Share Document