scholarly journals Rancang Bangun Antena Mikrostrip Bowtie Pada Frekuensi 5,2 Ghz

2018 ◽  
Vol 10 (2) ◽  
pp. 15-21
Author(s):  
Aprinal Adila Asril ◽  
Lifwarda Lifwarda ◽  
Yul Antonisfia

Microstrip antennas are very concerned shapes and sizes. Can be viewed in terms of simple materials, shapes, sizes and dimensions smaller antennae, the price of production is cheaper and able to provide a reasonably good performance, in addition to having many advantages, the microstrip antenna also has its drawbacks one of which is a narrow bandwidth. In this research will be designed a microstrip antenna bowtie which works at a frequency of 5.2 GHz which has a size of 68mm x 33mm groundplane. For the length and width of 33mm x 13mm patch. This antenna is designed on a printed cicuit board (PCB) FR4 epoxy with a dielectric constant of 4.7 and has a thickness of 1,6mm. This bowtie microstrip antenna design using IE3D software. This antenna has been simulated using IE3D software showed its resonance frequency is 5.270 GHz with a return loss -23 595 dB bandwidth of 230 MHz, VSWR 1,142, unidirectional radiation pattern and impedance 43,919Ω. The results of which have been successfully fabricated antenna with a resonant frequency of 5.21 GHz with a return loss -16.813 dB bandwidth of 79 MHz, VSWR 1.368, unidirectional radiation pattern, impedance 43,546Ω and HPBW 105 °.

2012 ◽  
Vol 2012 (1) ◽  
pp. 001078-001080
Author(s):  
Deepukumar Nair ◽  
Glenn Oliver ◽  
Jim Parisi

Organic coverlays are required to protect microstrip circuits in most applications. The presence of coverlay can potentially influence the performance of microstrip antennas. This paper describes the qualification of polyimide based coverlays for microstrip antennas both in 900 MHz and 2.50 GHz frequency bands. An Inverted F-shaped antenna fabricated on FR-4 dielectric is used as the test vehicle and two different coverlay materials are tested with respect to key parameters like resonant frequency, S11 bandwidth, antenna gain, frequency detuning, and radiation pattern. The data presented in this paper clearly indicates polyimide materials are well suited to cover microstrip antenna circuits with minimal impact on performance.


Author(s):  
FAJAR WAHYU ARDIANTO ◽  
SETYAWAN RENALDY ◽  
FARHAN FATHIR LANANG ◽  
TRASMA YUNITA

ABSTRAKKebutuhan pengguna yang semakin meningkat harus diimbangi dengan peningkatan kecepatan data dan kapasitas suatu jaringan, sehingga diperlukan bandwidth yang lebar. 5G merupakan salah satu teknologi yang akan diresmikan tahun 2020 yang menjadi solusi terhadap peningkatan kecepatan data dan kapasitas layanan. Salah satu kandidat yang menjadi frekuensi kerja 5G yaitu 28 GHz. Antena mikrostrip merupakan salah satu jenis antena yang dapat digunakan untuk teknologi 5G. Namun, antena mikrostrip memiliki beberapa kekurangan, diantaranya bandwidth dan gain yang kecil. Untuk itu, dibutuhkan teknik yang dapat meningkatkan bandwidth dan gain antena. Pada penelitian ini dirancang antena mikrostrip bentuk rectangular patch yang ditambahkan slot berbentuk U dengan tujuan meningkatkan bandwidth dan disusun secara array 1×2 untuk meningkatkan gain antena. Hasil dari simulasi didapatkan antena mampu bekerja pada rentang frekuensi 27,5 GHz – 29,12 GHz pada batas return loss kurang dari -15 dB dengan bandwidth sebesar 1,62 GHz. Nilai gain yang dihasilkan sebesar 7,52 dB. Pola radiasi yang dihasilkan, yaitu unidireksional dan berpolarisasi secara linear.Kata kunci: 5G, 28 GHz, mikrostrip, rectangular patch, array, U-Slot ABSTRACTData rate and network capacity improvements offset the increase of user needs, hence it requires a wider bandwidth. The most current high-end technology, which can solve the problem is 5G. One of the frequency that becomes the candidate of 5G is 28 GHz. For 5G, it could apply one of the antenna types, micro strip antenna. However, micro strip antenna has a shortage of narrow bandwidth and small gain. Therefore, it requires a technique to increase the bandwidth and gain of the antenna. In this study, the form of micro strip of antenna design is a rectangular patch with the addition of U-Slot and arranged 1x2 to increase the bandwidth and antenna gain. The results of the simulation show that the antenna is working well at the range frequency of 27.5 GHz - 29.12 GHz, with a return loss limit of -15 dB with bandwidth of 1.62 GHz, the resulting gain value is 7.52 dB, the resulting radiation pattern is unidirectional and linearly polarized.Keywords: 5G, 28 GHz, microstrip, rectangular patch, array, U-Slot


2021 ◽  
Vol 8 (2) ◽  
pp. 47-50
Author(s):  
Nail Alaoui ◽  
Aicha Djalab ◽  
Lakhdar Bouhamla ◽  
Abdellah Azouze ◽  
Rania Ibtissam Benmelouka ◽  
...  

The paper at hand discusses a novel method of miniaturization of antenna design using metamaterials. We suggest a novel method to improve frequency characteristics while reducing antenna size. This method is based on the connection of this element resonant two split rings resonator. The resonant frequency, return loss, bandwidth, radiation pattern, gain, directivity, electromagnetic field, and current supplied by the proposed antenna are the parameters addressed in this study. CST software generates all simulation results.


2021 ◽  
Vol 2117 (1) ◽  
pp. 012028
Author(s):  
A Irfansyah ◽  
B B Harianto ◽  
N Pambudiyatno

Abstract Microstrip antennas are currently popular because they have the advantage and meet the demand for small and lightweight antennas so that they are compatible and easy to integrate. This study aims to design an antenna microstrip rectangular 1x2 array, a rectangular patch microstrip antenna consisting of two elements. The antenna has a patch size of 19.5 mm x 26.5 mm array 1x2 with a frequency of 3.5 GHz. The antenna design is made in a simulation that works at a frequency of 3.5 GHz, and the substrate material is made of FR 4, which has a constant (ε r of) of 4.3, while patch materials are made of copper. Calculating the value of the initial antenna parameters will be optimized by sweeping the parameters to obtain the desired return loss, VSWR, gain, bandwidth, and directivity. The results of optimization of the rectangular microstrip antenna design 1x2 array work at a frequency of 3.5 GHz with a return loss -12.54 dB in the frequency range 3. 47 GHz up to 3.53 GHz, bandwidth 66.5 MHz, VSWR value of 1.6 and produce a gain of 5.5 dB.


2019 ◽  
Vol 8 (2) ◽  
pp. 59-62
Author(s):  
A. Sondas

Recently, microstrip antennas are preferred in all areas of wireless communication, due to their advantages such as low volume coverage, light weight, surface compatibility, high cost requirements and easy production etc. The main disadvantage of these antennas is their narrow band performance (~11%). In the literature, there are some wideband microstrip antenna designs. These broadband characteristics are obtained by changing the antenna geometry or by adding new parasitic patches to the antenna elements. In this study, a classical wideband microstrip dipole antenna (MDA) design which can be used in WLAN/WiMAX applications (covering the bands 2.4–2.5 GHz and 2.5–3.5 GHz) is introduced. The proposed antenna has a pair of twisted strip which are placed asymmetrically near the feed of the dipole element with a length of 52 mm (~λ/2). Also a pair of square loop elements is placed on a sublayer. The proposed MDA has a resonance between 2.06-3.72 GHz with a bandwidth of 57%. The antenna has a directive radiation pattern with a gain of 6.49-3.98 dBi.


2019 ◽  
Vol 12 (1) ◽  
pp. 37-41
Author(s):  
A. Pramod Kumar

Abstract The objective of E-shaped patch antenna with hexagonal slot is to operate in the ISM band for different kind of applications, such as WLAN, GPS, and various modern wireless systems. The posit antenna is designed using FR4 substrate having a dielectric constant of 4.4 with a thickness of 1.6 mm. Probe feed technique is used for this antenna design. A parametric study was included to determine the effect of design approaches and the antenna performance. The realization of the designed antenna was analyzed in term of boost (gain), return loss, and radiation pattern. The design was upsurged to confirm the best achievable result. This antenna resonates at three different frequencies at 1.6 GHz, 3.24 GHz, and 5.6 GHz with a reflection coefficient less than -10 dB and VSWR<2.


Author(s):  
Fitri Elvira Ananda ◽  
Shita Fitria Nurjihan ◽  
Muhammad Arif Rahman

Modifying the shape of the patch microstrip antenna is one way to solve the narrow bandwidth. E-Shaped patch microstrip antenna is obtained by modifying a rectangular patch mikrostrip antenna. The results on this research have succesfully compared the design and simulation antenna parameters between rectangular patch and E-shaped patch. It uses FR-4 as a substrate and works on 5500 MHz frequency for WiFi. The feeding method using a feedline method. The E-shaped patch microstrip antenna has a VSWR value of 1.04 and the antenna return loss is -33.73 dB, better than the rectangular patch. The gain of E-shaped patch is increased by almost 2.5 times and the bandwidth is increased by 10.18% compared to the rectangular patch. The radiation pattern of the two patches has the same directional radiation pattern.


2008 ◽  
Vol 2008 ◽  
pp. 1-7 ◽  
Author(s):  
J. Chung ◽  
S. Hamedi-Hagh

This paper presents the design of an inductor and an antenna for a portable device with GPS and FM capabilities. The inductor is designed to operate at the lower frequency FM band as part of a matching network and the antenna is designed to operate at the higher frequency GPS L1 band. The FR4 PCB used has a thickness of 1.6 mm with a dielectric constant of 3.8 and has two metallization layers. The inductor is designed with 1.5 mm trace width, 3.5 turns, and has a dimension of 14.5 mm × 14.5 mm. It has an inductance of 95 nH, a resistance of 2.9 Ω, a self-resonance frequency of 500 MHz, and a maximum Q of 51 from 100 MHz to 200 MHz (FM band). The antenna has a dimension of 49 mm × 36 mm and is designed to operate at 1.5754 GHz L1 band. It also has a return loss of −36 dB and a measured bandwidth of 250 MHz.


A comb shaped microstrip antenna is designed by loading rectangular slots on the patch of the antenna. The antenna resonating at three different frequencies f1 = 5.35 GHz, f2 = 6.19 GHz and f3= 8.15 GHz. The designed antenna is simulated on High Frequency Structure Simulator software [HFSS] and the antenna is fabricated using substrate glass epoxy with dielectric constant 4.4 having dimension of 8x4x0.16 cms. The antenna shows good return loss, bandwidth and VSWR. Experimental results are observed using Vector Analyzer MS2037C/2.


Sign in / Sign up

Export Citation Format

Share Document