KLASIFIKASI TEKS SOSIAL MEDIA TWITTER MENGGUNAKAN SUPPORT VECTOR MACHINE (Studi Kasus Penusukan Wiranto)
In the era of technological disruption of mass communication, social media became a reference in absorbing public opinion. The digitalization of data is very rapidly produced by social media users because it is an attempt to represent the feelings of the audience. Data production in question is the user posts the status and comments on social media. Data production by the public in social media raises a very large set of data or can be referred to as big data. Big data is a collection of data sets in very large numbers, complex, has a relatively fast appearance time, so that makes it difficult to handle. Analysis of big data with data mining methods to get knowledge patterns in it. This study analyzes the sentiments of netizens on Twitter social media on Mr. Wiranto stabbing case. The results of the sentiment analysis showed 41% gave positive comments, 29% commented neutrally, and 29% commented negatively on events. Besides, modeling of the data is carried out using a support vector machine algorithm to create a system capable of classifying positive, neutral, and negative connotations. The classification model that has been made is then tested using the confusion matrix technique with each result is a precision value of 83%, a recall value of 80%, and finally, as much as 80% obtained in testing the accuracy.