scholarly journals KLASIFIKASI TEKS SOSIAL MEDIA TWITTER MENGGUNAKAN SUPPORT VECTOR MACHINE (Studi Kasus Penusukan Wiranto)

2019 ◽  
Vol 2 (2) ◽  
pp. 43
Author(s):  
Lalu Mutawalli ◽  
Mohammad Taufan Asri Zaen ◽  
Wire Bagye

In the era of technological disruption of mass communication, social media became a reference in absorbing public opinion. The digitalization of data is very rapidly produced by social media users because it is an attempt to represent the feelings of the audience. Data production in question is the user posts the status and comments on social media. Data production by the public in social media raises a very large set of data or can be referred to as big data. Big data is a collection of data sets in very large numbers, complex, has a relatively fast appearance time, so that makes it difficult to handle. Analysis of big data with data mining methods to get knowledge patterns in it. This study analyzes the sentiments of netizens on Twitter social media on Mr. Wiranto stabbing case. The results of the sentiment analysis showed 41% gave positive comments, 29% commented neutrally, and 29% commented negatively on events. Besides, modeling of the data is carried out using a support vector machine algorithm to create a system capable of classifying positive, neutral, and negative connotations. The classification model that has been made is then tested using the confusion matrix technique with each result is a precision value of 83%, a recall value of 80%, and finally, as much as 80% obtained in testing the accuracy.

2021 ◽  
Vol 10 (3) ◽  
pp. 346-358
Author(s):  
Sola Fide ◽  
Suparti Suparti ◽  
Sudarno Sudarno

Corona virus pandemic requires people to do activities from home so the number of internet usage in Indonesia has increased because information is carried out through social media. One of the popular social media in Indonesia is TikTok. However, the Tiktok’s popularity cannot be separated from the footsteps of TikTok in Indonesia which was blocked by government for committing many violations. Each application allows users to provide a review about the application. To find out the users TikTok’s sentiment, sentiment analysis was carried out to classify reviews into positive and negative sentiments. Classification is carried out using the Support Vector Machine (SVM) with kernel Radial Basis Function (RBF) method which is more effective classification algorithm and kernel function, seen from previous studies. The parameters used in the SVM gamma default 0.0004255 and the Cost (C) parameter experiment used is 0,01; 0,1; 1; 10; 100; 1000. The  results can provide information that can be retrieved using the association method. The steps are scrapping data, data preprocessing, sentiment scoring, TF-IDF weighting, classifying using the SVM RBF kernel method and text association. Evaluation of the model using a confusion matrix with the value of accuracy and kappa. The greater the value of accuracy and kappa, the better the performance of the classification model. The review classification resulted in the best accuracy rate of 90.62% and the best kappa of 81.24% which means that it includes an almost perfect classification result. Based on the data association, positive reviews are given because users like and are comfortable with the current version of TikTok which contains funny videos on fyp. Meanwhile, negative reviews were given because the user failed to register and his account was blocked, so the user asked TikTok to continue to make improvements.


2021 ◽  
Vol 9 (1) ◽  
pp. 126-136
Author(s):  
Rahmat Robi Waliyansyah ◽  
Umar Hafidz Asy'ari Hasbullah

Coffee is one of the many favorite drinks of Indonesians. In Indonesia there are 2 types of coffee, namely Arabica & Robusta. The classification of coffee beans is usually done in a traditional way & depends on the human senses. However, the human senses are often inconsistent, because it depends on the mental or physical condition in question at that time, and only qualitative measures can be determined. In this study, to classify coffee beans is done by digital image processing. The parameters used are texture analysis using the Gray Level Coocurrence Matrix (GLCM) method with 4 features, namely Energy, Correlation, Homogeneity & Contrast. For feature extraction using a classification algorithm, namely Naïve Bayes, Tree, Support Vector Machine (SVM) and Logistic Regression. The evaluation of the coffee bean classification model uses the following parameters: AUC, F1, CA, precision & recall. The dataset used is 29 images of Arabica coffee beans and 29 images of Robusta beans. To test the accuracy of the model using Cross Validation. The results obtained will be evaluated using the confusion Matrix. Based on the results of testing and evaluation of the model, it is obtained that the SVM method is the best with the value of AUC = 1, CA = 0.983, F1 = 0.983, Precision = 0.983 and Recall = 0.983.


2020 ◽  
Vol 4 (3) ◽  
pp. 650
Author(s):  
Rian Tineges ◽  
Agung Triayudi ◽  
Ira Diana Sholihati

In the year 2018, 18.9% of the population in Indonesia mentioned that the main reason for their use of the Internet is social media. One of the social media with an active user of 6.43 million users is Twitter. Based on the surge of information published via Twitter, it is possible that such information may contain the user's opinions on an object, such objects may be events around the community such as a product or service. This makes the company use Twitter as a medium to disseminate information. An example is an Internet Service Provider (ISP) such as Indihome. Through Twitter, users can discuss each other's complaints or satisfaction with Indihome's services. It takes a method of sentiment analysis to understand whether the textual data includes negative opinions or positive opinions. Thus, the authors use the Support Vector Machine (SVM) method in sentiment analysis on the opinions of the Indihome service user on Twitter, with the aim of obtaining a sentiment classification model using SVM, and to know how much accuracy the SVM method generates, which is applied to sentiment analysis, and to see how satisfied the Indihome service users are based on Twitter. After testing with SVM method The result is accuracy 87%, precision 86%, recall 95%, error rate 13%, and F1-score 90%


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7916
Author(s):  
Mingu Kang ◽  
Siho Shin ◽  
Gengjia Zhang ◽  
Jaehyo Jung ◽  
Youn Tae Kim

Examining mental health is crucial for preventing mental illnesses such as depression. This study presents a method for classifying electrocardiogram (ECG) data into four emotional states according to the stress levels using one-against-all and naive Bayes algorithms of a support vector machine. The stress classification criteria were determined by calculating the average values of the R-S peak, R-R interval, and Q-T interval of the ECG data to improve the stress classification accuracy. For the performance evaluation of the stress classification model, confusion matrix, receiver operating characteristic (ROC) curve, and minimum classification error were used. The average accuracy of the stress classification was 97.6%. The proposed model improved the accuracy by 8.7% compared to the previous stress classification algorithm. Quantifying the stress signals experienced by people can facilitate a more effective management of their mental state.


2012 ◽  
Vol 531 ◽  
pp. 562-565 ◽  
Author(s):  
Hai Ying Yang ◽  
Yun Liu

The classification of the grade of shrink and expansion for the expansive soils was the initial and essential work for engineering construction in expansive soil area. Based on the principle of support vector machine analysis, a classification model of expansive was established in this paper, including five indexes reflecting the shrink and expansion of expansive soil, liquid limit, swell-shrink total ratio, plasticity index, water contents and free expansive ratio and functions were obtained through training a large set of expansive samples. It was shown that the classification model of SVM analysis is an effective method performed excellently with high prediction accuracy and could be used in practical engineering.


2021 ◽  
Vol 5 (2) ◽  
pp. 393-399
Author(s):  
Mahendra Dwifebri Purbolaksono ◽  
Muhammad Irvan Tantowi ◽  
Adnan Imam Hidayat ◽  
Adiwijaya Adiwijaya

Diabetes (diabetes) was a metabolic disorder caused by high levels of sugar in the blood caused by disorders of the pancreas and insulin. According to data from the Ministry of Health of the Republic of Indonesia, Diabetes was the third-largest cause of death in Indonesia with a percentage of 6.7%. The high rate of death from diabetes encouraged this study, with the aim of early detection. This research used a Machine Learning approach to classify the data. In this paper, a comparison of Support Vector Machine (SVM) and Modified Balanced Random Forest (MBRF) was discussed for classifying diabetes patient data. Both methods were chosen because it was proven in previous studies to get high accuracy, so that the two methods are compared to find the best classification model. Several preprocessing methods were used to prepare the data for the classification process. The entire combination of preprocessing steps will be carried out on the two classification methods to produce the same dataset. The evaluation was carried out using the Confusion Matrix method. Based on the experimental results in the process of testing the system being built, the maximum performance results were 87.94% using SVM and 97.8% using MBRF.


2019 ◽  
Vol 3 (2) ◽  
pp. 243-250
Author(s):  
Heru Sukma Utama ◽  
Didi Rosiyadi ◽  
Bobby Suryo Prakoso ◽  
Dedi Ariadarma

Analysis of the odd even-numbered sentiment systems in Bekasi toll using the Support Vector Machine Algorithm, is a process of understanding, extracting, and processing textual data automatically from social media. The purpose of this study was to determine the level of accuracy, recall and precision of opinion mining generated using the Support Vector Machine algorithm to provide information community sentiment towards the effectiveness of the odd system of Bekasi tiolls on social media. The research method used in this study was to do text mining in comments-comments regarding posts regarding even odd oddities on Bekasi toll on Twitter, Instagram, Youtube and Facebook. The steps taken are starting from preprocessing, transformation, datamining and evaluation, followed by information gaon feature selection, select by weight and applying SVM Algorithm model. The results obtained from the study using the SVM model are obtained Confusion Matrix result, namely accuracyof 78.18%, Precision of 74.03%, and Sensitivity or Recall of 86.82%. Thus this study concludes that the use of Support Vector Machine Algorithms can analyze even odd sentiments on the Bekasi toll road.  


2020 ◽  
Vol 4 (3) ◽  
pp. 504-512
Author(s):  
Faried Zamachsari ◽  
Gabriel Vangeran Saragih ◽  
Susafa'ati ◽  
Windu Gata

The decision to move Indonesia's capital city to East Kalimantan received mixed responses on social media. When the poverty rate is still high and the country's finances are difficult to be a factor in disapproval of the relocation of the national capital. Twitter as one of the popular social media, is used by the public to express these opinions. How is the tendency of community responses related to the move of the National Capital and how to do public opinion sentiment analysis related to the move of the National Capital with Feature Selection Naive Bayes Algorithm and Support Vector Machine to get the highest accuracy value is the goal in this study. Sentiment analysis data will take from public opinion using Indonesian from Twitter social media tweets in a crawling manner. Search words used are #IbuKotaBaru and #PindahIbuKota. The stages of the research consisted of collecting data through social media Twitter, polarity, preprocessing consisting of the process of transform case, cleansing, tokenizing, filtering and stemming. The use of feature selection to increase the accuracy value will then enter the ratio that has been determined to be used by data testing and training. The next step is the comparison between the Support Vector Machine and Naive Bayes methods to determine which method is more accurate. In the data period above it was found 24.26% positive sentiment 75.74% negative sentiment related to the move of a new capital city. Accuracy results using Rapid Miner software, the best accuracy value of Naive Bayes with Feature Selection is at a ratio of 9:1 with an accuracy of 88.24% while the best accuracy results Support Vector Machine with Feature Selection is at a ratio of 5:5 with an accuracy of 78.77%.


2020 ◽  
Vol 4 (2) ◽  
pp. 329-335
Author(s):  
Rusydi Umar ◽  
Imam Riadi ◽  
Purwono

The failure of most startups in Indonesia is caused by team performance that is not solid and competent. Programmers are an integral profession in a startup team. The development of social media can be used as a strategic tool for recruiting the best programmer candidates in a company. This strategic tool is in the form of an automatic classification system of social media posting from prospective programmers. The classification results are expected to be able to predict the performance patterns of each candidate with a predicate of good or bad performance. The classification method with the best accuracy needs to be chosen in order to get an effective strategic tool so that a comparison of several methods is needed. This study compares classification methods including the Support Vector Machines (SVM) algorithm, Random Forest (RF) and Stochastic Gradient Descent (SGD). The classification results show the percentage of accuracy with k = 10 cross validation for the SVM algorithm reaches 81.3%, RF at 74.4%, and SGD at 80.1% so that the SVM method is chosen as a model of programmer performance classification on social media activities.


2020 ◽  
Vol 15 ◽  
Author(s):  
Chun Qiu ◽  
Sai Li ◽  
Shenghui Yang ◽  
Lin Wang ◽  
Aihui Zeng ◽  
...  

Aim: To search the genes related to the mechanisms of the occurrence of glioma and to try to build a prediction model for glioblastomas. Background: The morbidity and mortality of glioblastomas are very high, which seriously endangers human health. At present, the goals of many investigations on gliomas are mainly to understand the cause and mechanism of these tumors at the molecular level and to explore clinical diagnosis and treatment methods. However, there is no effective early diagnosis method for this disease, and there are no effective prevention, diagnosis or treatment measures. Methods: First, the gene expression profiles derived from GEO were downloaded. Then, differentially expressed genes (DEGs) in the disease samples and the control samples were identified. After that, GO and KEGG enrichment analyses of DEGs were performed by DAVID. Furthermore, the correlation-based feature subset (CFS) method was applied to the selection of key DEGs. In addition, the classification model between the glioblastoma samples and the controls was built by an Support Vector Machine (SVM) based on selected key genes. Results and Discussion: Thirty-six DEGs, including 17 upregulated and 19 downregulated genes, were selected as the feature genes to build the classification model between the glioma samples and the control samples by the CFS method. The accuracy of the classification model by using a 10-fold cross-validation test and independent set test was 76.25% and 70.3%, respectively. In addition, PPP2R2B and CYBB can also be found in the top 5 hub genes screened by the protein– protein interaction (PPI) network. Conclusions: This study indicated that the CFS method is a useful tool to identify key genes in glioblastomas. In addition, we also predicted that genes such as PPP2R2B and CYBB might be potential biomarkers for the diagnosis of glioblastomas.


Sign in / Sign up

Export Citation Format

Share Document