scholarly journals Histogenetic morphotypes of rats respiratory system at the stages of early and late fetogenesis

Author(s):  
E. N. Gordienko ◽  
S. S. Tseluyko

Aim. Morphological analysis of the deployment of histogenetic information of pulmonary parenchyma at the stages of late embryogenesis and fetogenesis in laboratory rats within the limits of the norm of reaction with verification according to morphometric criteria of individual morphotypes.Materials and methods. Comparative morphological study of histogenesis of endodermal derivatives of the lungs of rats at critical periods of intrauterine development – late embryogenesis (day 14 of gestation), and late fetogenesis (day 20 of gestation) was performed using morphometric identification of plane parameters and a complex of plane form factors of epithelial structures of the lung. Morphometric studies were carried out in the Morphometer program on semi-thin sections of the rat lung.Results. Two critical stages of histogenesis of entodermal beginnings of fetal lungs are described – pseudoglandular and canalicular. The options of discordance of individual development within the response norm are justified. The lungs of the fetus at the pseudoglandular stage and the canalicular stage show significant fluctuations in the plane values of the pulmonary parenchyma, the presence in different individuals of variants of the plane values of entodermal derivatives, which indicated individual morphotypes of the development of the rat lung. At the pseudoglandular stage, in fetus with type I, called “compact”, the total area of the tubular system and the total perimeter are significantly inferior (p<0.001) to the same indicators of the lung II morphotype, designated as “air”. The values of one tubule (the outer perimeter, its area, the dimensions of the X-projection and Y-projection, the length of the epithelial tubes) in type I, on the contrary, are significantly larger than in type II (p<0.01). Among form factors, reliable differences have elongation (FE), squareness (FQ) and equivalent radius (FR) (p<0.01), less significant compactness (FF) and roundness (FC) (p<0.05). The discordance of development is established by a number of reliable values at the stage of late fetogenesis: the area of the tubule (p<0.01), the area of the epithelium of the preacinar department (p<0.001), the value of the outer perimeter of the tubule, the length and, to a lesser extent, the width of the tubule (p<0.05) significantly exceed such type II indicators. In this regard, the dimensions of X- and Y-projections for type I are also increased (p<0.05).Conclusion. As a result of morphological studies, the development of entodermal derivatives of pulmonary parenchyma at the pseudoglandular stage (day 14 of gestation) and the canalicular stage (day 20 of gestation) in rat fetus was verified; morphometric criteria for assessing the histogenesis of entodermal parenchyma units at critical stages of development have been introduced; comparative analysis of morphometric indices of different individuals in gestation dynamics; individual variants of two morphotypes are objectified – “compact-I” and “air-II” in the process of histogenesis of the fetal lungs.

1990 ◽  
Vol 38 (2) ◽  
pp. 233-244 ◽  
Author(s):  
D J Taatjes ◽  
L A Barcomb ◽  
K O Leslie ◽  
R B Low

We used post-embedding cytochemical techniques to investigate the lectin binding profiles of rat lung alveolar epithelial cells. Sections from rat lung embedded in the hydrophilic resin Lowicryl K4M were incubated either directly with a lectin-gold complex or with an unlabeled lectin followed by a specific glycoprotein-gold complex. The binding patterns of the five lectins used could be divided into three categories according to their reactivity with alveolar epithelial cells: (a) the Limax flavus lectin and Ricinus communis I lectin bound to both type I and type II cell plasma membranes; (b) the Helix pomatia lectin and Sambucus nigra L. lectin bound to type II but not type I cells; and (c) the Erythrina cristagalli lectin reacted with type I cells but was unreactive with type II cells. The specificity of staining was assessed by control experiments, including pre-absorption of the lectins with various oligosaccharides and enzymatic pre-treatment of sections with highly purified glycosidases to remove specific sugar residues. The results demonstrate that these lectins can be used to distinguish between type I and type II cells and would therefore be useful probes for investigating cell dynamics during lung development and remodeling.


1981 ◽  
Vol 91 (2) ◽  
pp. 427-437 ◽  
Author(s):  
C A Vaccaro ◽  
J S Brody

The ultrastructural characteristics of alveolar (ABM) and capillary (CBM) basement membranes in the adult rat lung have been defined using tannic acid fixation, ruthenium red staining, or incubation in guanidine HCl. ABM is dense and amorphous, has 3- to 5-nm filaments in the lamina rara externa (facing the alveolus) that run between the lamina densa and the basal cell surface of the epithelium, has an orderly array of ruthenium red-positive anionic sites that appear predominantly (79%) on the lamina rara externa, and has discontinuities beneath alveolar type II cells but not type I cells that allow penetration of type II cytoplasmic processes into the interstitium of the alveolar wall. The CBM is fibrillar and less compact than ABM, has no lamina rara filaments, and has one fifth the number of ruthenium red-positive anionic sites of ABM that appear predominantly (64%) overlying the lamina densa. Incubation of lung tissue with Flavobacterium heparinum enzyme or with chondroitinase has shown that ABM anionic sites represent heparan sulfate proteoglycans, whereas CBM anionic sites contain this and other sulfated proteoglycans. The CBM fuses in a local fashion with ABM, compartmentalizing the alveolar wall into a thick and thin side and establishing a thin, single, basement-membrane gas-exchange surface between alveolar air, and capillary blood. The potential implications of ABM and CBM ultrastructure for permeability, cell differentiation, and repair and morphogenesis of the lung are discussed.


1981 ◽  
Vol 29 (2) ◽  
pp. 291-305 ◽  
Author(s):  
M C Williams ◽  
B J Benson

We investigated the cellular and subcellular sites of metabolism of the 72,000 dalton protein of pulmonary surfactant in order to provide insights into mechanisms of synthesis, intracellular assembly, and intraalveolar metabolism of this phospholipid-rich secretory product. Surfactant (approximately 90% lipid, 10% protein by weight) was purified by density gradient centrifugation of material obtained by lavaging rat lungs. The purified material was used to generate an antiserum from which a specific antibody was obtained by affinity chromatography. A horseradish peroxidase-labeled Fab was used to localize the antigen in rat lung. The antibody labeled the rough endoplasmic reticulum and Golgi apparatus of type II cells only. Some multivesicular bodies in type II cells were also labeled, but whether the antigen was present in lamellar bodies was uncertain. Phagosomes of alveolar macrophages were labeled as were similar inclusions in type I cells. Using indirect immunocytochemistry we determined that the labeling of alveolar cell surfaces does not represent the presence of a continuous layer of secreted surfactant. These results suggest that only the type II cell synthesizes surfactant protein and than mainly alveolar macrophages participate in its catabolism. The initial intracellular site of the association of protein with lipid may be multivesicular bodies as suggested previously by others.


1995 ◽  
Vol 268 (3) ◽  
pp. L455-L464 ◽  
Author(s):  
S. Buch ◽  
R. N. Han ◽  
J. Liu ◽  
A. Moore ◽  
J. D. Edelson ◽  
...  

Lungs exposed to elevated O2 concentrations suffer an initial loss of type I pneumocytes, followed by a reparative type II pneumocyte hyperplasia. We hypothesized that type II pneumocyte hyperplasia after exposure of young adult rats to 85% O2 in vivo would be temporally related to 1) an increased concentration of intrapulmonary basic fibroblast growth factor (bFGF), a potent stimulator of type II pneumocyte DNA synthesis in vitro, and 2) an upregulation of pneumocyte receptors for bFGF (FGF-R). Increased rat lung bFGF mRNA, relative to air-exposed control animals, was observed at 4 days of exposure, with no increase at days 6 and 14 of exposure. Parallel changes were observed with bFGF receptor (flg) mRNA. Nuclear runoff assays confirmed increased transcription of both bFGF and flg genes in response to 85% O2, whereas increased translation at 6 days of exposure was confirmed by protein immunoanalysis. Immunohistochemistry demonstrated a broad distribution of bFGF throughout the lung, including the alveolar epithelium, which increased after 6 and 14 days of exposure to 85% O2. Our findings are compatible with a role for bFGF in O2-mediated pneumocyte hyperplasia.


1993 ◽  
Vol 123 (3) ◽  
pp. 549-560 ◽  
Author(s):  
Y F Xu ◽  
A N Meyer ◽  
M K Webster ◽  
B A Lee ◽  
D J Donoghue

Membrane-anchored forms of the v-sis oncoprotein have been previously described which are oriented as type I transmembrane proteins and which efficiently induce autocrine transformation. Several examples of naturally occurring membrane-anchored growth factors have been identified, but all exhibit a type I orientation. In this work, we wished to construct and characterize membrane-anchored growth factors with a type II orientation. These experiments were designed to determine whether type II membrane-anchored growth factors would in fact exhibit biological activity. Additionally, we wished to determine whether the hydrophobic domain of the E5 oncoprotein of bovine papilloma virus (BPV) can function as a signal-anchor domain to direct type II membrane insertion. Type II derivatives of the v-sis oncoprotein were constructed, with the NH2 terminus intracellular and the COOH terminus extracellular, by substituting the NH2 terminal signal sequence with the signal-anchor domain of a known type II membrane protein. The signal-anchor domains of neuraminidase (NA), asialoglycoprotein receptor (ASGPR) and transferrin receptor (TR) all yielded biologically active type II derivatives of the v-sis oncoprotein. Although transforming all of the type II signal/anchor-sis proteins exhibited a very short half-life. The short half-life exhibited by the signal/anchor-sis constructs suggests that, in some cases, cellular transformation may result from the synthesis of growth factors so labile that they activate undetectable autocrine loops. The E5 oncoprotein encoded by BPV exhibits amino acid sequence similarity with PDGF, activates the PDGF beta-receptor, and thus resembles a miniature membrane-anchored growth factor with a putative type II orientation. The hydrophobic domain of the E5 oncoprotein, when substituted in place of the signal sequence of v-sis, was indistinguishable compared with the signal-anchor domains of NA, TR, and ASGPR, demonstrating its ability to function as a signal-anchor domain. NIH 3T3 cells transformed by the signal/anchor-sis constructs exhibited morphological reversion upon treatment with suramin, indicating a requirement for ligand/receptor interactions in a suramin-sensitive compartment, most likely the cell surface. In contrast, NIH 3T3 cells transformed by the E5 oncoprotein did not exhibit morphological reversion in response to suramin.


2001 ◽  
Vol 183 (17) ◽  
pp. 5155-5162 ◽  
Author(s):  
Jin-Yong Jeong ◽  
Asish K. Mukhopadhyay ◽  
Junko K. Akada ◽  
Daiva Dailidiene ◽  
Paul S. Hoffman ◽  
...  

ABSTRACT The relative importance of the frxA andrdxA nitroreductase genes of Helicobacter pylori in metronidazole (MTZ) susceptibility and resistance has been controversial. Jeong et al. (J. Bacteriol. 182:5082–5090, 2000) had interpreted that Mtzs H. pylori were of two types: type I, requiring only inactivation of rdxA to became resistant, and type II, requiring inactivation of both rdxA and frxA to become resistant; frxA inactivation by itself was not sufficient to confer resistance. In contrast, Kwon et al. (Antimicrob. Agents Chemother. 44:2133–2142, 2000) had interpreted that resistance resulted from inactivation either of frxA orrdxA. These two interpretations were tested here. Resistance was defined as efficient colony formation by single cells from diluted cultures rather than as growth responses of more dense inocula on MTZ-containing medium. Tests of three of Kwon's Mtzs strains showed that each was type II, requiring inactivation of both rdxA and frxA to become resistant. In additional tests, derivatives of frxA mutant strains recovered from MTZ-containing medium were found to contain new mutations in rdxA, and frxA inactivation slowed MTZ-induced killing of Mtzs strains. Northern blot analyses indicated that frxA mRNA, and perhaps also rdxAmRNA, were more abundant in type II than in type I strains. We conclude that development of MTZ resistance in H. pylori requires inactivation of rdxA alone or of both rdxA andfrxA, depending on bacterial genotype, but rarely, if ever, inactivation of frxA alone, and that H. pyloristrains differ in regulation of nitroreductase gene expression. We suggest that such regulatory differences may be significant functionally during human infection.


1970 ◽  
Vol 45 (5) ◽  
pp. 215-219 ◽  
Author(s):  
William F. McNary ◽  
Al-Walid El-Bermani

1980 ◽  
Vol 92 (2) ◽  
pp. 463-469 ◽  
Author(s):  
Terry S. Yagura ◽  
Caroline C. Sigman ◽  
Pricilla A. Sturm ◽  
Elmer J. Reist ◽  
Howard L. Johnson ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Noor Yousif

The Histo-mrphology were directed on the pneumonic alveoli of 6 male goats. The respiratory portion is composed of typical cuboidal epithelial cells with Clara cell, however, alveolar ducts are lined by simple squamous epithelium and alveoli were generally circular structures that opened into the alveolar conduits and alveolar sacs or respiratory bronchioles. Alveoli were made out of two kinds of cells for example Type-I pneumocytes and Type-II pneumocytes. Previous framed the mainlining epithelial cells of alveoli which were squamous in sort having noticeable perinuclear territory and central found the core, while the last were cuboidal fit as a fiddle with the midway found core and periodically found among the Sort I cells in the alveolar epithelium. The lung pulmonary parenchyma was enveloped by the mesothelium (squamous epithelium) layer of visceral pleura.


Sign in / Sign up

Export Citation Format

Share Document