Engineering Method for Calculating the Temperature on the Inner Surface of the Outer Corner of a Building

Author(s):  
Н. П. Умнякова

Постановка задачи. Температура на внутренней поверхности наружного угла всегда меньше, чем по глади наружной стены, что при низких температурах наружного воздуха может приводить к образованию конденсата на внутренней поверхности стены. В связи с этим актуальным является проблема разработки инженерного метода расчета температуры в наружном углу для исключения возможности конденсатообразования на внутренней поверхности угла на стадии проектирования стеновых конструкций. Результаты. Для решения этой задачи на основе решения уравнения теплового баланса, учета амплитуды колебания температуры воздуха в помещении и теплопоглощения внутренних поверхностей стен, междуэтажных перекрытий (поверхности потолка и пола), перегородок, окон получена формула для вычисления температуры на внутренней поверхности наружного угла. Также в ходе исследования проведены натурные испытания стеновой конструкции с наружным углом и получены значения температур на внутренней и наружной поверхностях. Выводы. Сопоставление результатов расчетов по разработанной методике и экспериментальных данных показало, что значения температур на внутренней поверхности наружного угла практически совпадают. Это дает основание использовать предложенный инженерный метод расчета температуры на внутренней поверхности угла наружной стены при проектировании ограждающих конструкций зданий для создания благоприятных комфортных и санитарно-гигиенических условий в помещении. Statement of the problem. The temperature on the inner surface of the outer corner is always lower than on the inner surface of the outer wall. This temperature difference might lead to the formation of condensation on the inner surface of the wall at low outdoor temperatures. Therefore the problem of developing an engineering method for calculating the temperature in the outer corner to exclude the possibility of condensation on the inner surface in the design process of the outer wall structures is extremely relevant. Results. To address this problem, based on solving the heat balance equation, taking into account the amplitude of air temperature fluctuations in the room and heat absorption of the inner surfaces of walls, intermediate bottoms (ceiling and floor surfaces), parting walls, a formula was obtained to calculate the temperature on the inner surface of the outer corner. Also, through the course of the study, natural tests of the wall structure with an outer corner were carried out and the temperatures on the inner and outer surfaces were obtained. Conclusions. Comparison of the calculation results using the developed engineering calculation method and experimental data showed that the temperatures on the inner surface of the outer corner almost coincided. This makes it possible to use the suggested engineering method for calculating the temperature on the inner surface of the outer wall corner in the design of enclosing structures to exclude condensation.

Author(s):  
N. P. Umnyakova

Statement of the problem. The temperature on the inner surface of the outer corner is always lower than on the inner surface of the outer wall. This temperature difference might lead to the formation of condensation on the inner surface of the wall at low outdoor temperatures. Therefore the problem of developing an engineering method for calculating the temperature in the outer corner to exclude the possibility of condensation on the inner surface in the design process of the outer wall structures is extremely relevant. Results. To address this problem, based on solving the heat balance equation, taking into account the amplitude of air temperature fluctuations in the room and heat absorption of the inner surfaces of walls, intermediate bottoms (ceiling and floor surfaces), parting walls, a formula was obtained to calculate the temperature on the inner surface of the outer corner. Also, during the study, natural tests of the wall structure with an outer corner were carried out and the temperatures on the inner and outer surfaces were obtained.Conclusions. Comparison of the calculation results using the developed engineering calculation method and experimental data showed that the temperatures on the inner surface of the outer corner almost coincided. This makes it possible to use the suggested engineering method for calculating the temperature on the inner surface of the outer wall corner in the design of enclosing structures to exclude the appearance of condensation.


Author(s):  
Volodymyr Semko ◽  
Oleg Yurin ◽  
Natliia Mahas ◽  
Anastasiia Norka ◽  
Yevhen Pylypenko

The article analyzes one of the ways to increase the heat-protective properties of thebuilding corner - rounding the outer surface of the outer wall the corner . The walls of houses nearthe outer corner, due to their configuration, have less heat-insulating properties than the walls inother areas. This is due to the fact that the area of heat flow perception on the inner surface of thewalls at an angle less than the area of heat transfer on the outer surface. Convective heat exchangenear the inner surface of the corner, due to the inhibition of air movement is less than in other areas,so the amount of heat coming from the indoor air to the wall surface is less. For climatic conditionsof Poltava region the research of temperature fields of calculated sections of the wall (withoutrounding of a corner, with rounding of a wall of various radius an external surface) with definitionof a heat stream size, the minimum temperature on an internal surface of a wall and the resulted heattransfer resistance is carried out. The dependences of the rounding radius of the wall outer surfaceon the heat flow passing through the design area of the wall outer corner, brick consumption withinthe design area, insulation consumption within the design area, the amount of room area reductiondue to rounding the wall for five design schemes. The analysis of dependences the constructed graphsshowed that the intensive reduction of the heat flux passing through the calculated section occurs ata radius of the wall outer surface rounding of 0.9 m and more; a slight decrease in the area of theroom due to the rounding of the wall occurs to a radius of curvature of 1.4 m; intensive reduction ofbrick volume within the calculated area occurs when the radius of curvature is more than 0.8 m,similarly to mineral wool up to 0.7 m. It is determined that the optimal radius of curvature of theouter wall is 0.8 m, it will increase the thermal properties of the angle and reduce the heat transfercoefficient by the transmission of the external enclosing structure of the building as a whole.


Author(s):  
A. N. Belous ◽  
O. E. Belous ◽  
S. V. Krakhin

The standardized indicator is the heat transfer resistance as the main factor that plays the main role in assessing the energy efficiency of the thermal envelope of a building. During the last decades, the climatic conditions change toward the increase in average daily temperature in the summer period. Thus, the thermal resistance of external wall structures becomes more and more urgent. This problem is reduced to an assumption that the heat flow in the wall structure is directed from the external surface to the internal. This paper analyzes the heat flow distribution and redistribution in time in the wall structure. The paper presents a comparative analysis of the modelling and calculation results of the nonstationary heat flow for solving the thermal stability problem.


Author(s):  
David H. Sturm ◽  
Bob F. Perkins

Each of the seven families of rudists (Mollusca, Bivalvia, Hippuritacea) is characterized by distinctive shell-wall architectures which reflect phylogenetic relationships within the superfamily. Analysis of the complex, calcareous, cellular wall of the attached valve of the radiolite rudist Eoradiolites davidsoni (Hill) from the Comanche Cretaceous of Central Texas indicates that its wall architecture is an elaboration of the simpler monopleurid rudist wall and supports possible radiolite-monopleurid relationships.Several well-preserved specimens of E. davidsoni were sectioned, polished, etched, and carbon and gold coated for SEM examination. Maximum shell microstructure detail was displayed by etching with a 0.7% HC1 solution from 80 to 100 seconds.The shell of E. davidsoni comprises a large, thick-walled, conical, attached valve (AV) and a small, very thin, operculate, free valve (FV) (Fig. 1a). The AV shell is two-layered with a thin inner wall, in which original structures are usually obliterated by recrystallization, and a thick, cellular, outer wall.


2020 ◽  
pp. 56-58
Author(s):  
P.V. Gubarev ◽  
D.V. Glazunov ◽  
V.G. Ruban ◽  
A.S. Shapshal

The thermal calculation of the locomotive traction engine collector is proposed. The equations of the heat balance of its elements are obtained taking into account the cooling air. The calculation results and experimental data of thermal imaging control are presented. Keywords: traction electric motor, collector, thermal calculation, thermal imaging control. [email protected]


2017 ◽  
Vol 21 (9) ◽  
pp. 1327-1348
Author(s):  
Cong Chen ◽  
Renjie Xiao ◽  
Xilin Lu ◽  
Yun Chen

Structure with replaceable devices is a type of earthquake resilient structure developed to restore the structure immediately after strong earthquakes. Current researches focus on one type of the replaceable device located in the structural part that is most likely to be damaged; however, plastic deformation would not be limited in a specific part but expand to other parts. To concentrate possible damage in shear wall structures, combined form of replaceable devices was introduced in this article. Based on previous studies, combined form of replaceable coupling beam and replaceable wall foot was used in a coupled shear wall. Influences of the dimension and location of the replaceable devices to the strength and stiffness of the shear wall were investigated through numerical modeling, which was verified by experimental data. Performance comparison between the shear walls with one type and combined form of replaceable devices and the conventional coupled shear wall was performed. In general, the shear wall with combined form of replaceable devices is shown to be better energy dissipated, and proper dimensions and locations of the replaceable devices should be determined.


2002 ◽  
Vol 92 (3) ◽  
pp. 989-996 ◽  
Author(s):  
Kayleen S. Kott ◽  
Kent E. Pinkerton ◽  
John M. Bric ◽  
Charles G. Plopper ◽  
Krishna P. Avadhanam ◽  
...  

Rat and monkey are species that are used in models of human airway hyperresponsiveness. However, the wall structures of rat and monkey airways are different from each other, with that of the monkey more closely resembling that of humans. We hypothesized that differences in wall structure would explain differences in airway responsiveness. Using videomicrometry, we measured airway luminal area in lung slices to compare proximal and distal airway responsiveness to methacholine in the rat and monkey. The airway type was then histologically identified. Proximal airways of the young rat and monkey were equally responsive to methacholine. In contrast, respiratory bronchioles of monkeys were less responsive than were their proximal bronchi, whereas the distal bronchioles of rats were more responsive than their proximal bronchioles. Both proximal and distal airways of younger monkeys were more responsive than those of older monkeys. Airway heterogeneity in young monkeys was greatest with regard to degree of airway closure of respiratory bronchioles. We conclude that responsiveness to methacholine varies with airway wall structure and location.


2021 ◽  
Vol 12 (2) ◽  
pp. 46-52
Author(s):  
Kęstutis Urbonas ◽  
Danutė Sližytė ◽  
Antanas Šapalas

For industrial buildings and logistics centres truck lifts are usually used. Therefore, there are special requirements for flatness tolerance of ground floor. The ground floor settlements differences in selected distances are limited. The article reviews the behaviour of soils and the importance of the actual behaviour assessment of soils during the design of floor slab on elastic subgrade. Particular attention is given to the behaviour of floor slab areas above pile foundations that support the building’s columns. Calculation results show the impact of subgrade stiffness on the behaviour of the floor slab, especially in areas above pile foundations, where the stiffness of subgrade is much higher. The article presents a solution for achieving the required level of settlements’ differences in areas where pile foundations for the building’s columns under the ground slab are used. The paper proposes an efficient engineering method to reduce ground slab settlements differences. The results of performed calculations confirm the efficiency of presented method.


1984 ◽  
Vol 28 (04) ◽  
pp. 240-260
Author(s):  
Robert Latorre ◽  
Zisimos Mourelatos ◽  
Efstratios Nikolaidis

A theoretical model of a steam turbine is formulated based on idealized Curtis and reaction stages to obtain expressions for a stage-by-stage evaluation of the turbine state line. Using typical stage geometries and corrections a computer program was developed to size the turbine and evaluate its state line at design conditions. A comparison of the heat balance made with the stage-by-stage state line and the standard heat balance is presented. For the design case of 30 000 shp it is shown that the differences in the heat balance calculation results are within ±0.5 percent.


2018 ◽  
Vol 10 (8) ◽  
pp. 2835 ◽  
Author(s):  
Jihui Yuan

The dynamic thermal characteristics of external wall structures are directly related to indoor thermal comfort and energy savings in buildings; they are also complicated and worth investigating. Thermal insulation in external wall structures has become a popular topic of investigation in the domain of building energy efficiency. This study aims to find the impact of insulation type and thickness on the dynamic thermal characteristics of external wall structures using a homogeneous multi-layer building external wall structure and three types of insulation materials that are widely used in Japan. The impact of insulation type and thickness on seven thermal characteristics of external walls, including thermal transmittance, decrement factor or amplitude attenuation, time lag, thermal admittance, time lead for thermal admittance, surface factor, and thermal capacity, was evaluated by numerical methods in this study. It was shown that insulation type and thickness would have a significant effect on thermal transmittance, decrement factor and time lag, but yield no significant change in thermal admittance, time lead for thermal admittance, surface factor, and the thermal capacity of external wall structures.


Sign in / Sign up

Export Citation Format

Share Document