Organization of non-traffic jam traffic at an intersection when cycle time and roadway width are limited

In General, two problems need to be solved in the traffic management system: road safety and capacity. In this paper, it is proposed to use a calculated way to optimize the cycle of a traffic light object in order to ensure the maximum capacity of the node of the road network. The calculation method is based to determining the optimal ratio of the number of lanes intended for vehicle traffic and the duration of a cycle of the traffic light object. Keywords capacity, street and road network, traffic flow, stop line, width of the roadway

2021 ◽  
Vol 2021 (23) ◽  
pp. 205-213
Author(s):  
Andrii Vozniuk ◽  
◽  
Oksana Hulchak ◽  
Volodymyr Kaskiv ◽  
Yevheniia Shapenko ◽  
...  

Збірник наукових праць «ДОРОГИ І МОСТИ» www.dorogimosti.org.uaISSN 2524-0994. Dorogi i mosti, 2021. Issue 23ТРАНСПОРТНІ ТЕХНОЛОГІЇ21312. Annual safety report 2018. URL: https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/pdf/statistics/dacota/asr2018.pdf (Last accessed: 01.12.2020) [in English].13. Monitorynh dorozhno-transportnykh pryhod na avtomobilnykh dorohakh zahalnoho korystuvannya derzhavnoho znachennya Ukrayiny za 2018 rik [Monitoring of road accidents on public roads of state importance of Ukraine in 2018] : report. DP «DerzhdorNDI». Kyiv, 2019. 73 p. [in Ukrainian].14. Dmytrychenko M.F., Lanovyy O.T., Polishchuk V.P. Systemolohiya na transporti. Tekhnolohiya naukovykh doslidzhen’ i tekhnichnoyi tvorchosti (Knyha 2) [Systemology in transport. Technology of scientific research and technical creativity (Book 2)]. Kyiv, 2007. 318 p. [in Ukrainian].15. Duran B., Odel P. Klasterniy analiz [Cluster Analysis]. Moscow, 1977. 128 p. [in Russian].16. Zhambu M. Yerarkhycheskii klaster-analiz i sootvetstviya [Hierarchical cluster analysis and correspondences]. Moscow, 1988. 342 p. [in Russian].17. Holdberg A.M., Kozlov V.S. Obshchaya teoriya statistiki [General theory of statistics]. Moscow, 1985. 367 p. [in Russian].Volodymyr Kaskiv1, Ph.D., Associate Prof., https://orcid.org/0000-0002-8074-6798Yevheniia Shapenko2, Ph.D., https://orcid.org/0000-0003-0937-9400Oksana Hulchak2, Ph.D., Associate Prof., https://orcid.org/0000-0001-8186-4529Andrii Vozniuk3,https://orcid.org/0000-0002-7611-96521 M.P. Shulgin State Road Research Institute State Enterprise – DerzhdorNDI SE, Kyiv, Ukraine2 National Transport University, Kyiv, Ukraine 3 State Road Agency of Ukraine (Ukravtodor), Kyiv, Ukraine SUBSTANTIATION OF FACTORS OF INFLUENCE ON TRAFFIC SAFETYAbsractVelocity of personal vehicles or traffic flow for a certain period of time and on a certain section of the road is the main indicator that characterizes the impact of road conditions, environment, technical condition of the car and psychophysiological factors on the driver.To evaluate the each factor impact of on the velocity, survey was conducted on the M-06Kyiv – Chop road. A cluster analysis of field observation data was performed using the Statistica 12 software, connections were established in the middle of the data set, and the obtained data were organized into certain structures. As a result of the clustering, groups of clusters that have the greatest impact on speed were identified. Determining the hierarchy of factors influencing the speed and safety of the transport process shall improve approaches for modeling traffic flow velocity dependences. The paper describes an analysis of road safety risk factors.Problem Statement. The need to modernize approaches for traffic flow prediction, traffic volume distribution on the road network, means and methods of traffic management, traffic management systems in connection with quantitative and qualitative changes in the transport sector of Ukraine.Purpose. Road safety risk factors validation and ranking.Materials and method. Mathematical modeling and cluster analysis using survey data.Results. The dependence of speed on road conditions was improved using mathematical modeling.Conclusions. The hierarchy of factors influencing the speed and safety of the transport process is determined.Keywords: analysis, cluster, safety, road, method, model, velocity.


Author(s):  
Нагребельна Л. П. ◽  
Поліщук В. П.

The object of the study is the improvement of traffic management on the main street and road network of the city. Actually, there are many techniques that allow simulating the traffic flows with sufficient accuracy. One of such models is a mathematical model, which allows calculating the main characteristics of a traffic flow on the basis of a few initial data and is considered as a queuing system.Modeling allows pre-determining the impact of traffic management measures on the existing street and road network without creating interference for drivers, making changes to the design of road, increasing the traffic volume, as well as involving the possible overloaded areas.An analysis of the researches of scientists who have considered similar methods in their works had been performed. The fundamental flaw of the mentioned works is that in none of them the study of the model of a real road section was performed for verifying of the model adequacy. Modeling allows understanding more accurately the behavior of an object with less approximations than mathematical models, and provides less researching and forecasting of the system behavior with significant changes in the initial concepts. It is indicated that for the first approximation it is expedient to use mathematical models, and for clarifying the characteristics – to use non- mathematical methods, in particular, simulation.It is proved that simulation is a powerful tool for studying the behavior of real systems. It is mainly used to study situations and systems that can be described as queuing systems.Using the queuing theory, it becomes possible to perform certain calculations and determine indicators of effectiveness of the queuing system.Obtained result of the indicators will help to determine the street and road network areas where a traffic jam may form for any reason, where the road will be overloaded. This makes it possible to develop a high-quality algorithm for quick elimination of traffic jam.


2020 ◽  
Vol 1 (2) ◽  
pp. 65-70
Author(s):  
Daniel Shunu

In this study, a proposed intelligent traffic management system is presented making use of the wireless sensor network for improving traffic flow.  By making use of the clustering algorithm, VANET environment is utilized for the proposed system. The components of the proposed system include sensor node hardware, vehicle detection system through magnetometer, and UDP protocol for communication between the nodes. The intersection control agent receives the information about the vehicles and by making use of its algorithm, it dynamically changes the traffic light timings. By making use of the greedy algorithm, the system can be enhanced to a wider area by connecting multiple intersections.


2019 ◽  
Vol 18 (1) ◽  
pp. 47-54
Author(s):  
D. V. Kapskiy ◽  
D. V. Navoy ◽  
P. A. Pegin

The paper considers issues pertaining to creation of a model for controlling road traffic with the purpose to minimize delays on street and road network, which is proposed as an innovative one while developing an intelligent transport system of the large city that is Minsk. The developed model has a complex structure of algorithmic support. The first-level model has been implemented on the basis of fuzzy logic, for which a program has been developed and conditions have been determined, and operation of traffic light at a real local intersection of Minsk, which is included in the automated traffic management system, has been simulated. Innovation in the first-level model is an approach in determining conditions while detecting a fuzzy set without using a standard algorithm that is an algorithm of local flexible regulation. The paper proposes and investigates a model that works on the basis of operationally obtained parameters of traffic flow intensity at characteristic points (sections) of street and road network. Efficiency of the first-level model has been equal to 8 % due to optimization of a traffic light cycle (reduction of transport delays during passage of stop lines). Results of the simulation using the proposed computer program have made it possible to improve efficiency of traffic management on the studied highway (Logoysky trakt) in Minsk city of Minsk by 15 % due to decrease of delay level in case of unilateral coordination. The algorithm has been already implemented as part of the current automated traffic management system in the city of Minsk and it has shown its efficiency. However this efficiency can be increased if it is used together with an algorithm for searching maximum volume of motion in a cycle with a distributed intensity pulse. It has been planned to take into account this specific feature when increasing possibilities for algorithmization of traffic management.


Author(s):  
A. S. Homainejad

With growth of urbanisation, there is a requirement for using the leverage of smart city in city management. The core of smart city is Information and Communication Technologies (ICT), and one of its elements is smart transport which includes sustainable transport and Intelligent Transport Systems (ITS). Cities and especially megacities are facing urgent transport challenge in traffic management. Geospatial can provide reliable tools for monitoring and coordinating traffic. In this paper a method for monitoring and managing the ongoing traffic in roads using aerial images and CCTV will be addressed. In this method, the road network was initially extracted and geo-referenced and captured in a 3D model. The aim is to detect and geo-referenced any vehicles on the road from images in order to assess the density and the volume of vehicles on the roads. If a traffic jam was recognised from the images, an alternative route would be suggested for easing the traffic jam. In a separate test, a road network was replicated in the computer and a simulated traffic was implemented in order to assess the traffic management during a pick time using this method.


KS Tubun Street is a street in Bogor, which has a fairly high vehicle volume and become one of a high-traffic jam area. This is caused by KS Tubun Street is the main road for road users from Jakarta and Bogor. Traffic jam problem that occurs due to the confluence interchange of traffic flow and traffic lights settings that are not proportional to the volume of vehicles across the road. Optimization of traffic flow at KS Tubun Street performed by the stages of forming a model of traffic flow, determining the density and velocity of the vehicle is based on the Greenberg model, and determining the length of the traffic lights to avoid a buildup of vehicles. The result is a traffic flow model with distance and time parameters. The density of vehicles that occurs on the streets of KS. Tubun street based on the Greenberg model between 180 to 240 unit car of passanger (ucp) with the average velocity of vehicles 15 to 19.5 km per hour. The density of vehicles on KS. Tubun street can be break down by increasing time. Traffic light cycle time can be reduced for 8 seconds with the red light glowing time is 80 seconds and the green light glowing time is 62 seconds.


2022 ◽  
Vol 14 (2) ◽  
pp. 131-139
Author(s):  
Igor Khitrov ◽  
◽  
Mykhailo Krystopchuk ◽  
Oleg Tson ◽  
Oleg Pochuzhevskiy ◽  
...  

The main task in ensuring the appropriate level of organization of traffic on the street and road network of cities is to minimize traffic delays, increase traffic safety, provide transport and pedestrian communication between the planning elements of the city. Problems caused by the deterioration of the street and road network significantly affect the work of the entire transport complex of the city. Significant traffic delays, congestion, characterized by increased travel time, deterioration of transport services, increased pollution of urban environment due to increased emissions and noise, increasing the number of road accidents indicate the inconsistency of the road network of cities to the modern level of motorization. To ensure the required capacity of the elements of the road network, there is a need to create appropriate road conditions, namely the construction of new and reconstruction of existing engineering structures and elements of streets and roads. However, addressing these issues may not always improve the performance of the entire network, as, in parallel with technical measures based on the construction and reconstruction of transport infrastructure, the application of effective traffic management measures to manage traffic in urban areas should be addressed streets. When creating conditions for optimizing the operation of regulated intersections, it is necessary to take into account the technical condition of vehicles, road conditions and the condition of the road surface. One of the main tasks of any traffic organization is to increase the capacity of intersections and reduce vehicle delays, ie the passage of traffic lights with minimal delay. To solve the problem of congestion of the street and road network of the city is to increase the efficiency and use of coordinated management of traffic and pedestrian flows, improving the operation of traffic lights. To implement the introduction of coordinated traffic light regulation, or the so-called green wave, it is necessary to establish the intensity and composition of traffic flows, the capacity of the elements of the road network and the modes of operation of traffic light facilities. The paper considers the results of the study of the impact of coordinated traffic management in the central part of Rivne on reducing traffic delays when passing intersections by vehicles and proposed technical solutions to improve road safety by equipping intersections with additional technical means of traffic control.


2021 ◽  
Vol 2021 (1) ◽  
pp. 13-24
Author(s):  
Ivan Pasnak ◽  
◽  
Artur Renkas ◽  

With the growth of the road transport fleet and increase of urban agglomerations, the availability of private transport on the streets of cities with a population over 500 thousand inhabitants is quite noticeable. The previously developed general plans of such settlements, in modern realities, are impossible to implement both from a financial point of view and in terms of the urban space organization. Given the impossibility of meeting the needs of private car users, public transport comes first in the priorities of urban mobility. Problematic areas of the road network in many western Ukrainian cities are those that are densely populated. In such cases, it is not always possible to redesign elements of street sections or intersections, so the traffic management improvement is limited to organizational measures. Among them, the most popular and least expensive are the change the modes of light control at intersections. Considering modern opportunities, technical means and scientific achievements, the capacity of signalized intersections is high. The same applies to the principles of giving priority to public transport over time (at signalized intersections). At present, a significant number of methods and algorithms for detecting and heading the movement of public transport at traffic lights have been developed, however, the criteria for the application of each of them are not fully understood. As a result of the conducted research, the change of queues in front of stop-lines at intersections depending on types of signalization is defined. The results showed that the existing type of control creates significant traffic delays on secondary streets. As a result, it is proposed to use adaptive control, which provides for the adjustment of the traffic light cycle in the presence of tram traffic. Using traffic simulation tools, it became possible to choose different modes of traffic lights control at intersections, which can provide public transport priority, while minimizing the negative impact on the adjacent elements of the road network.


2019 ◽  
Vol 1 (2) ◽  
pp. 134-143
Author(s):  
Armandio Philip ◽  
Cheetah Savana Putri ◽  
Putra Maula Arifanggi

As time goes by and the development of the times is very rapid increase in the number of vehicle volumes is increasing from year to year, coupled with automotive manufacturers who release their products at prices below the standard. This of course can increase the volume of congestion which is the main problem, very heavy traffic causes more time wasted and consumes fuel. The solution offered to overcome the congestion problem is a Timer Traffic Light control system, which is a traffic management system on each road segment used to reduce congestion in traffic lights that occur in big cities today. For the future, this is very much needed, given the increasing number of vehicles queuing at the traffic light. In this study a controller model of Timer Traffic Light was created based on image processing with the Background Subtraction method using the Raspberry Pi. The Background Subtraction method is used to process images containing objects that have been captured on the highway using a camera, the images obtained can classify the condition of the road with parameters of empty, medium, and solid conditions. The images obtained are then forwarded to the Timer Traffic Light controller system with the hardware and software used in this study.


2021 ◽  
Vol 13 (1) ◽  
pp. 45-57
Author(s):  
Attila M. Nagy ◽  
Vilmos Simon

Managing the frequent traffic congestion (traffic jams) of the road networks of large cities is a major challenge for municipal traffic management organizations. In order to manage these situations, it is crucial to understand the processes that lead to congestion and propagation, because the occurrence of a traffic jam does not merely paralyze one street or road, but could spill over onto the whole vicinity (even an entire neighborhood). Solutions can be found in professional literature, but they either oversimplify the problem, or fail to provide a scalable solution. In this article, we describe a new method that not only provides an accurate road network model, but is also a scalable solution for identifying the direction of traffic congestion propagation. Our method was subjected to a detailed performance analysis, which was based on real road network data. According to testing, our method outperforms the ones that have been used to date.


Sign in / Sign up

Export Citation Format

Share Document