Technology for fi nishing combined processing of mineral-ceramic coatings

2020 ◽  
pp. 318-323
Author(s):  
E.V. Panichev ◽  
V.P. Smolentsev ◽  
V.V. Ivanov

Technological methods for manufacturing of cooling elements of modern rocket engines are considered, they are developed taking into account the possibility of reusable use. Significant increase in the thermal load on the walls of combustion chambers of liquid rocket engines required the creation of new ways to protect the surface layer of the hot zone from the effects of the flame in the fuel combustion zone. The possibilities for using of plasma application of metal-ceramic heat-protective coatings for these purposes, which have good erosion resistance and high thermal resistance in conditions of intense exposure to high-temperature combustion products, are revealed. The analysis of the effect of the quality of the coatings surface layer on the performance characteristics of the product is presented. The need for local finishing of the applied coatings is justified, including in the transition areas of the combustion chambers and the jet nozzle, which have limited tool access to the processing zone. The most effective method is the combined alignment of the microprofile with the imposition of electric field. But for its implementation, set of studies is needed to study the mechanism of allowance removing, and to adjust the technological modes. The task of minimizing allowances for finishing combined processing is solved, which allowed to align the thickness of the heat-protective coating along the length of the fuel combustion path, including the cleaning sections, to increase the number of trouble-free engine starts by 1.5...2.0 times and ensure reusable use of product.

2019 ◽  
Vol 11 (3) ◽  
pp. 135-145 ◽  
Author(s):  
Alexandru-Iulian ONEL ◽  
Oana-Iuliana POPESCU ◽  
Ana-Maria NECULAESCU ◽  
Tudorel-Petronel AFILIPOAE ◽  
Teodor-Viorel CHELARU

The paper presents a fast mathematical model that can be used to quickly asses the propulsive characteristics of liquid propelled rocket engines. The main propulsive parameters are computed using combustion surfaces obtained after a nonlinear data fitting analysis. This approach is much more time efficient than using standard codes which rely on frequent calls of the Fuel Combustion Charts and interpolating their data. The tool developed based on the proposed mathematical model can be used separately or it can be integrated in a multidisciplinary optimisation algorithm for a preliminary microlauncher design.


2006 ◽  
Vol 50 ◽  
pp. 174-181 ◽  
Author(s):  
Steffen Beyer ◽  
Stephan Schmidt ◽  
Franz Maidl ◽  
Rolf Meistring ◽  
Marc Bouchez ◽  
...  

Various technology programmes in Europe are concerned with preparing for future propulsion technologies to reduce the costs and increase the life time of components for liquid rocket engine components. One of the key roles to fulfil the future requirements and for realizing reusable and robust engine components is the use of modern and innovative materials. One of the key technologies which concern various engine manufacturers worldwide is the development of fibrereinforced ceramics – CMC's (Ceramic Matrix Composites). The advantages for the developers are obvious – the low specific weight, the high specific strength over a large temperature range, and their good damage tolerance compared to monolithic ceramics make this material class extremely interesting as a construction material. Different kind of composite materials are available and produced by EADS ST, the standard material SICARBON® (C/SiC made by Liquid Polymer Infiltration) and the new developed and qualified composite materials SICTEX® (C/SiC made by Liquid Silicon Infiltration) and CARBOTEX® (C/C made by Rapid Chemical Vapour Infiltration). The composites are based on textile techniques like weaving, braiding, stiching and sewing to produce multiaxial preforms, the SICTEX® material is densificated by the cost effective Liquid Silicon Infiltration (LSI). Over the past years, EADS Space Transportation (formerly DASA) has, together with various partners, worked intensively on developing components for airbreathing and liquid rocket engines. Since this, various prototype developments and hot firing-tests with nozzle extensions for upper and core stage engines and combustion chambers of satellite engines were conducted. MBDA France and EADS-ST have been working on the development of fuel-cooled composite structures like combustion chambers and nozzle extensions for future propulsion applications.


2021 ◽  
Vol 1037 ◽  
pp. 516-521
Author(s):  
Vladislav Smolentsev ◽  
Nikolay Nenahov ◽  
Natalia Potashnikova

The heat-loaded part of the combustion chamber of a liquid rocket engine are Considered. The proposed coating has several layers: an internal metal coating that contacts the part or substrate, and an external coating made of a mixture of ceramic granules and metal powder. At the same time, to obtain the initial surface for coating with the required surface layer roughness, it is proposed to use the method of sand blasting. The article analyzes possible mechanisms of material formation for "base-coating" transition zones, as well as the influence of their chemical composition on the adhesive strength of layers.. The choice of brand and combination of materials used for coating is justified. Technological modes that have been tested in production conditions when applying heat-resistant coatings to parts of modern rocket engines are proposed. The influence of technological parameters of the initial surface preparation process and the geometry of the resulting micro-relief of the substrate on the adhesion characteristics of a multilayer coating made of heat-protective materials operating in the high-temperature zone of the combustion chamber of liquid rocket engines is revealed.


Author(s):  
E. V. Panichev ◽  
V. P. Smolentsev ◽  
A. V. Shchednov

Various types of hot zone cooling systems for liquid rocket engines are considered. The analysis of systems for external and internal cooling of the hot zone of the combustion chamber and the jet co-PLA is performed. The area of primary use of external and internal impact of components on the combustion chamber and the jet nozzle of a temporary product with a high thermal load on the material is given. Recommendations on the choice of technological methods for processing heat-protective coatings were developed, where the advantages of combined electroabrasive treatment were revealed. In this case, the possibility of finishing the transition sections of the path from areas that are difficult to access for the tool, which have coatings with ceramic granules that have been used in the latest products of aerospace technology, is shown. The mechanism of heat transfer by the cooling medium from the areas of the greatest heating, as a rule, to the flow of the liquid fuel component of the fuel is shown. Examples of implementation of modern cooling systems on typical designs of combustion chambers of modern rocket engines are considered. It is shown that the cooling efficiency will be higher the more belts of the cooling medium curtain are located along the length of the combustion chamber. At the same time, it should be taken into account that the use of an excessively large number of belts means a significant complication of the camera design, its manufacturing technology, and an increase in the cost of the product.


Author(s):  
D.A. Yagodnikov ◽  
V.P. Aleksandrenkov ◽  
K.E. Kovalev ◽  
A.G. Grigoryants ◽  
A.A. Drenin

The article discusses hydraulic tests of a model combustion chamber of a liquid-propellant rocket engine with a cooling path made using additive selective laser melting technology. The values of the coefficient of hydraulic resistance in the range of Re = 10--2500 are obtained and the influence of the design features of the cooling tract and its manufacturing technology on the hydraulic characteristics is determined. The results of the performed hydraulic tests confirm the possibility of using additive technologies based on selective laser melting technology for the manufacture of fire and power walls of combustion chambers of liquid rocket engines.


1993 ◽  
Vol 322 ◽  
Author(s):  
Wen-Yi Lin ◽  
Robert F. Speyer

AbstractThe stability of MoSi2 was studied at 1600°C in combustion products with an incoming gas to air ratio of 1:6.7 and compared to results in a 1:10 environment. Oxidation was investigated using periodic weight measurements and characterization using XRD, SEM, and EDS. Passive oxidation was observed; MoSi2 was oxidized by H2O and CO2 to form Mo5 Si3 and SiO2. The amorphous silica product formed a surface layer and reduced the oxidation rate as it coarsened. MoO3(g) did not form which was in agreement with the thermodynamic (SOLGASMIX-PV) prediction that it would only form in the presence of molecular oxygen. A good agreement was observed between the measured and calculated weight gains based on the surface layer thickness.


Author(s):  
D.A. Sidlerov ◽  
S.A. Fedorov

A method for numerical simulation of operating processes in reducing gas generators with calculation of the condensed phase (soot) formation process detailed structure has been developed. It is assumed that soot is formed from gas-phase fuel in two stages. At the first stage, active radical nuclei are formed, and at the second stage, carbon black particles are formed from these nuclei. Numerical modeling of processes, fuel mixing and combustion, as well as soot formation in model reducing oxygen-methane gas generators with gas-liquid coaxial mixing elements of jet-jet type has been performed. Gas generators of this type can be used in promising oxygen-methane liquid rocket engines operating on open and closed circuits with reducing gas generators, as well as on the gas-gas circuit having reducing and oxidizing gas generators. A comparative analysis of soot formation features in gas generators with single- and multi-nozzle mixing heads has been performed. It is shown that a decrease in the pitch between the mixing elements leads to a significant change in the mixture formation processes, fuel combustion and the flow of combustion products (all other conditions being equal), which significantly reduces the intensity of condensed phase formation in reducing gas generators. The numerical simulation method will be used for studies of fuel combustion and condensed phase formation in regenerative gas generators of modern and advanced liquid rocket engines at the stages of development, design and improvement


Sign in / Sign up

Export Citation Format

Share Document