scholarly journals STUDI KEJADIAN MESOSCALE CONVECTIVE COMPLEX (MCC) DI WILAYAH PAPUA BAGIAN SELATAN PADA 9-10 MEI 2018

2019 ◽  
Vol 6 (1) ◽  
pp. 58-66
Author(s):  
Ilham Fajar Putra Perdana ◽  
Yosza Indra Rismana ◽  
Ferdian Adhy Prasetya ◽  
Adi Mulsandi

Mesoscale Convective Complex (MCC) pertama kali diperkenalkan oleh Maddox pada tahun 1980. MCC merupakan salah satu jenis Mesoscale Convective System (MCS) yang memiliki ukuran lebih dari 100.000 km2 dan waktu hidup lebih dari 6 jam yang dapat menghasilkan cuaca buruk dan curah hujan yang berkelanjutan. Pada tanggal 9 Mei 2018, sebuah MCC tumbuh di wilayah Papua bagian selatan. Penelitian ini bertujuan untuk mengetahui karakteristik pertumbuhan MCC, kondisi atmosfer, dan distribusi curah hujan di sekitar wilayah Papua bagian selatan. Hasil citra satelit kanal infrared (IR) menunjukkan bahwa MCC yang ada tumbuh hingga mencapai luasan > 300.000 km2 dengan waktu hidup selama 14 jam. Distribusi curah hujan citra Global Satellite Mapping (GSMaP) menunjukkan adanya daerah hujan sepanjang 800 km dengan intensitas curah hujan yang beragam hingga mencapai 40 mm/jam. Analisis kondisi atmosfer juga dilakukan terhadap parameter angin, kelembapan relatif, divergensi, dan vertical velocity dari data model European Centre for Medium-Range Weather Forecasts (ECMWF). Berdasarkan hasil analisis secara deskriptif, konvergensi terjadi di wilayah Papua bagian selatan pada troposfer bagian bawah pada saat fase pertumbuhan MCC yang disertai dengan kondisi kelembapan udara yang tinggi di lapisan 850 hPa. Deret waktu nilai vertical velocity juga menggambarkan adanya proses pertumbuhan dan peluruhan MCC di wilayah Papua bagian selatan pada 9-10 Mei 2018.

2020 ◽  
Vol 77 (12) ◽  
pp. 4233-4249
Author(s):  
Kathleen A. Schiro ◽  
Sylvia C. Sullivan ◽  
Yi-Hung Kuo ◽  
Hui Su ◽  
Pierre Gentine ◽  
...  

AbstractUsing multiple independent satellite and reanalysis datasets, we compare relationships between mesoscale convective system (MCS) precipitation intensity Pmax, environmental moisture, large-scale vertical velocity, and system radius among tropical continental and oceanic regions. A sharp, nonlinear relationship between column water vapor and Pmax emerges, consistent with nonlinear increases in estimated plume buoyancy. MCS Pmax increases sharply with increasing boundary layer and lower free tropospheric (LFT) moisture, with the highest Pmax values originating from MCSs in environments exhibiting a peak in LFT moisture near 750 hPa. MCS Pmax exhibits strikingly similar behavior as a function of water vapor among tropical land and ocean regions. Yet, while the moisture–Pmax relationship depends strongly on mean tropospheric temperature, it does not depend on sea surface temperature over ocean or surface air temperature over land. Other Pmax-dependent factors include system radius, the number of convective cores, and the large-scale vertical velocity. Larger systems typically contain wider convective cores and higher Pmax, consistent with increased protection from dilution due to dry air entrainment and reduced reevaporation of precipitation. In addition, stronger large-scale ascent generally supports greater precipitation production. Last, temporal lead–lag analysis suggests that anomalous moisture in the lower–middle troposphere favors convective organization over most regions. Overall, these statistics provide a physical basis for understanding environmental factors controlling heavy precipitation events in the tropics, providing metrics for model diagnosis and guiding physical intuition regarding expected changes to precipitation extremes with anthropogenic warming.


2006 ◽  
Vol 134 (3) ◽  
pp. 874-896 ◽  
Author(s):  
George Tai-Jen Chen ◽  
Chung-Chieh Wang ◽  
Li-Fen Lin

Abstract During 7–8 June 1998, an organized mesoscale convective system (MCS) formed within the mei-yu frontal cloud band and moved northeastward to produce heavy rain over the island of Taiwan. During this period, the section of the mei-yu front east of Taiwan moved northward, most significantly for about 300 km over 12 h. Meanwhile, a low-level jet (LLJ) developed within the environmental southwesterly flow to the south of the mei-yu front and the MCS. Observations revealed that the front retreated as low-level meridional wind components over the postfrontal region shifted from northerly to southerly. Using European Centre for Medium-Range Weather Forecasts (ECMWF) analyses with piecewise potential vorticity (PV) inversion technique and other methods, a diagnostic study was carried out to investigate the northward frontal movement and the formation of the LLJ. Results indicated that diabatic latent heating from the MCS, large enough in scale, generated positive PV and height fall at low levels. The enhanced height gradient induced northwestward-directed ageostrophic winds and the LLJ formed southeast of the MCS through Coriolis torque. The southwesterly flow associated with this diabatic PV perturbation led to rapid retreat of the frontal segment east of Taiwan at a speed of about 25 m s−1, while the movement was dominated by horizontal advection in the present case. During this process of readjustment toward geostrophy, a thermally indirect circulation also appeared over and south of the front, and the LLJ formed within its lower branch at 850 hPa. The enhanced southwesterly winds reached LLJ strength because they were superimposed upon a background monsoon flow at the same direction. To the lee of Taiwan, the topography also played the role in enhancing local wind speed at lower levels and contributed toward the frontal retreat at nearby regions.


2021 ◽  
Vol 893 (1) ◽  
pp. 012021
Author(s):  
A Ni’amillah ◽  
P Ismail ◽  
E L Siadari ◽  
I J A Saragih

Abstract A mesoscale Convective System (MCS) is a system consisting of groups of convective cells in the mesoscale. One of the largest types of MCS subclass is Mesoscale Convective Complex (MCC) occurred in the eastern part of the Makassar Strait near the Madjene and Polewali Mandar regions on 9 December 2014, morning to evening (09.00-15.00 LT). Using MTSAT-2 Satellite Imagery data, reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) interim era, the Global Satellite Mapping of Precipitation (GsMap) rainfall, sea surface temperature, surface air observation, and upper air observation, the author will examine the existence of MCC in the Makassar Strait in terms of atmospheric conditions when MCC enters the initial until extinct and the accompanying effects of precipitation. In general, it is known that the MCC formed in the waters of the Makassar Strait in the morning, and then it moved westward. The mechanism of its formation was through a process of convergence of the lower layers in the waters of the Makassar Strait and its surroundings to trigger the process of cloud formation. Warm thermal conditions also gave a big influence on the lower layers to the top and activate convective in the study area. Meanwhile, the MCC occurrence region also has high relative humidity, negative divergence values, and maximum vorticity values. The impact of the emergence of MCC on that date resulted in areas with very large humidity and cloud formation and produced rain in the surrounding area, in this case using rainfall data from Hasanuddin Meteorological Station, Makassar, South Sulawesi. With a duration of up to seven hours extinct, MCC in the Makassar Strait produces heavy rainfall in the Makassar Strait waters.


2017 ◽  
Vol 145 (6) ◽  
pp. 2257-2279 ◽  
Author(s):  
Bryan J. Putnam ◽  
Ming Xue ◽  
Youngsun Jung ◽  
Nathan A. Snook ◽  
Guifu Zhang

Abstract Ensemble-based probabilistic forecasts are performed for a mesoscale convective system (MCS) that occurred over Oklahoma on 8–9 May 2007, initialized from ensemble Kalman filter analyses using multinetwork radar data and different microphysics schemes. Two experiments are conducted, using either a single-moment or double-moment microphysics scheme during the 1-h-long assimilation period and in subsequent 3-h ensemble forecasts. Qualitative and quantitative verifications are performed on the ensemble forecasts, including probabilistic skill scores. The predicted dual-polarization (dual-pol) radar variables and their probabilistic forecasts are also evaluated against available dual-pol radar observations, and discussed in relation to predicted microphysical states and structures. Evaluation of predicted reflectivity (Z) fields shows that the double-moment ensemble predicts the precipitation coverage of the leading convective line and stratiform precipitation regions of the MCS with higher probabilities throughout the forecast period compared to the single-moment ensemble. In terms of the simulated differential reflectivity (ZDR) and specific differential phase (KDP) fields, the double-moment ensemble compares more realistically to the observations and better distinguishes the stratiform and convective precipitation regions. The ZDR from individual ensemble members indicates better raindrop size sorting along the leading convective line in the double-moment ensemble. Various commonly used ensemble forecast verification methods are examined for the prediction of dual-pol variables. The results demonstrate the challenges associated with verifying predicted dual-pol fields that can vary significantly in value over small distances. Several microphysics biases are noted with the help of simulated dual-pol variables, such as substantial overprediction of KDP values in the single-moment ensemble.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 718
Author(s):  
Cong Pan ◽  
Jing Yang ◽  
Kun Liu ◽  
Yu Wang

Sprites are transient luminous events (TLEs) that occur over thunderstorm clouds that represent the direct coupling relationship between the troposphere and the upper atmosphere. We report the evolution of a mesoscale convective system (MCS) that produced only one sprite event, and the characteristics of this thunderstorm and the related lightning activity are analyzed in detail. The results show that the parent flash of the sprite was positive cloud-to-ground lightning (+CG) with a single return stroke, which was located in the trailing stratiform region of the MCS with a radar reflectivity of 25 to 35 dBZ. The absolute value of the negative CG (−CG) peak current for half an hour before and after the occurrence of the sprite was less than 50 kA, which was not enough to produce the sprite. Sprites tend to be produced early in the maturity-to-dissipation stage of the MCS, with an increasing percentage of +CG to total CG (POP), indicating that the sprite production was the attenuation of the thunderstorm and the area of the stratiform region.


2017 ◽  
Vol 32 (2) ◽  
pp. 511-531 ◽  
Author(s):  
Luke E. Madaus ◽  
Clifford F. Mass

Abstract Smartphone pressure observations have the potential to greatly increase surface observation density on convection-resolving scales. Currently available smartphone pressure observations are tested through assimilation in a mesoscale ensemble for a 3-day, convectively active period in the eastern United States. Both raw pressure (altimeter) observations and 1-h pressure (altimeter) tendency observations are considered. The available observation density closely follows population density, but observations are also available in rural areas. The smartphone observations are found to contain significant noise, which can limit their effectiveness. The assimilated smartphone observations contribute to small improvements in 1-h forecasts of surface pressure and 10-m wind, but produce larger errors in 2-m temperature forecasts. Short-term (0–4 h) precipitation forecasts are improved when smartphone pressure and pressure tendency observations are assimilated as compared with an ensemble that assimilates no observations. However, these improvements are limited to broad, mesoscale features with minimal skill provided at convective scales using the current smartphone observation density. A specific mesoscale convective system (MCS) is examined in detail, and smartphone pressure observations captured the expected dynamic structures associated with this feature. Possibilities for further development of smartphone observations are discussed.


Sign in / Sign up

Export Citation Format

Share Document