cloud band
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 14)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Luciano Ponzi Pezzi ◽  
Mario F. L. Quadro ◽  
João Lorenzzetti ◽  
Arthur J Miller ◽  
Eliana B Rosa ◽  
...  

Abstract The South Atlantic Convergence Zone (SACZ) is an atmospheric system occurring in austral summer on the South America continent and sometimes extending over the adjacent South Atlantic. It is characterized by a persistent and very large, northwest-southeast-oriented, cloud band. Its presence over the ocean causes sea surface cooling that some past studies indicated as being produced by a decrease of incoming solar heat flux induced by the extensive cloud cover. Here we investigate ocean-atmosphere interaction processes in the Southwestern Atlantic Ocean (SWA) during SACZ oceanic episodes, as well as the resulting modulations occurring in the oceanic mixed layer and their possible feedbacks on the marine atmospheric boundary layer. Our main interests and novel results are on verifying how the oceanic SACZ acts on dynamic and thermodynamic mechanisms and contributes to the sea surface thermal balance in that region. In our oceanic SACZ episodes simulations we confirm an ocean surface cooling. Model results indicate that surface atmospheric circulation and the presence of an extensive cloud cover band over the SWA promote sea surface cooling via a combined effect of dynamic and thermodynamic mechanisms, which are of the same order of magnitude. The sea surface temperature (SST) decreases in regions underneath oceanic SACZ positions, near Southeast Brazilian coast, in the South Brazil Bight (SBB) and offshore. This cooling is the result of a complex combination of factors caused by the decrease of solar shortwave radiation reaching the sea surface and the reduction of horizontal heat advection in the Brazil Current (BC) region. The weakened southward BC and adjacent offshore region heat advection seems to be associated with the surface atmospheric circulation caused by oceanic SACZ episodes, which rotate the surface wind and strengthen cyclonic oceanic mesoscale eddy. Another singular feature found in this study is the presence of an atmospheric cyclonic vortex Southwest of the SACZ (CVSS), both at the surface and aloft at 850 hPa near 24°S and 45°W. The CVSS induces an SST decrease southwestward from the SACZ position by inducing divergent Ekman transport and consequent offshore upwelling. This shows that the dynamical effects of atmospheric surface circulation associated with the oceanic SACZ are not restricted only to the region underneath the cloud band, but that they extend southwestward where the CVSS presence supports the oceanic SACZ convective activity and concomitantly modifies the ocean dynamics. Therefore, the changes produced in the oceanic dynamics by these SACZ events may be important to many areas of scientific and applied climate research. For example, episodes of oceanic SACZ may influence the pathways of pollutants as well as fish larvae dispersion in the region.


2021 ◽  
pp. 1-58
Author(s):  
Marcia T. Zilli ◽  
Neil C. G. Hart

AbstractDuring austral summer, persistent tropical-extratropical cloud bands, such as the South Atlantic Convergence Zone (SACZ) over South America (SAm), link the tropical humid areas to the subtropics. In this study, we utilize an automatic object-based methodology to identify synoptic cloudband events occurring over SAm which are responsible for almost 60% of the precipitation during the rainy season (November to March). In addition to identifying SACZ events as cloud bands persisting four or more days, the framework also highlights the relevance of transient events (i.e., events persisting for three days or less) to the climatology. The location and persistence of the cloudband events are modulated by the propagation of synoptic-scale extratropical disturbances interacting with intraseasonal variability in the basic state upper-level zonal wind. During persistent events (i.e., lasting four or more days), upper-level westerly anomalies over the subtropics favour the propagation extratropical disturbances deeper into the tropics. Conversely, transient events occur when the Bolivian High is displaced/expanded southeastward, bringing upper-level easterly winds into subtropical latitudes and blocking the propagation of Rossby waves into lower latitudes. Subsequent anomalous subtropical convection from the cloud bands result in sources of Rossby waves that interact with the basic flow, resulting in downwind enhancement or damping of the extratropical disturbances. The adopted methodology proved to be a powerful framework in demonstrating this interaction between scales, with the basic state influencing and being modified by the synoptic disturbances.


Author(s):  
Zongsheng Zheng ◽  
Chenyu Hu ◽  
Zhaorong Liu ◽  
Jianbo Hao ◽  
Qian Hou ◽  
...  

AbstractTropical cyclone, also known as typhoon, is one of the most destructive weather phenomena. Its intense cyclonic eddy circulations often cause serious damages to coastal areas. Accurate classification or prediction for typhoon intensity is crucial to the disaster warning and mitigation management. But typhoon intensity-related feature extraction is a challenging task as it requires significant pre-processing and human intervention for analysis, and its recognition rate is poor due to various physical factors such as tropical disturbance. In this study, we built a Typhoon-CNNs framework, an automatic classifier for typhoon intensity based on convolutional neural network (CNN). Typhoon-CNNs framework utilized a cyclical convolution strategy supplemented with dropout zero-set, which extracted sensitive features of existing spiral cloud band (SCB) more effectively and reduces over-fitting phenomenon. To further optimize the performance of Typhoon-CNNs, we also proposed the improved activation function (T-ReLU) and the loss function (CE-FMCE). The improved Typhoon-CNNs was trained and validated using more than 10,000 multiple sensor satellite cloud images of National Institute of Informatics. The classification accuracy reached to 88.74%. Compared with other deep learning methods, the accuracy of our improved Typhoon-CNNs was 7.43% higher than ResNet50, 10.27% higher than InceptionV3 and 14.71% higher than VGG16. Finally, by visualizing hierarchic feature maps derived from Typhoon-CNNs, we can easily identify the sensitive characteristics such as typhoon eyes, dense-shadowing cloud areas and SCBs, which facilitates classify and forecast typhoon intensity.


2021 ◽  
Vol 2 (1) ◽  
pp. 89-110 ◽  
Author(s):  
Annika Oertel ◽  
Michael Sprenger ◽  
Hanna Joos ◽  
Maxi Boettcher ◽  
Heike Konow ◽  
...  

Abstract. Warm conveyor belts (WCBs) are dynamically important, strongly ascending and mostly stratiform cloud-forming airstreams in extratropical cyclones. Despite the predominantly stratiform character of the WCB's large-scale cloud band, convective clouds can be embedded in it. This embedded convection leads to a heterogeneously structured cloud band with locally enhanced hydrometeor content, intense surface precipitation and substantial amounts of graupel in the middle troposphere. Recent studies showed that embedded convection forms dynamically relevant quasi-horizontal potential vorticity (PV) dipoles in the upper troposphere. Thereby one pole can reach strongly negative PV values associated with inertial or symmetric instability near the upper-level PV waveguide, where it can interact with and modify the upper-level jet. This study analyzes the characteristics of embedded convection in the WCB of cyclone Sanchez based on WCB online trajectories from a convection-permitting simulation and airborne radar observations during the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) field campaign (intense observation periods, IOPs, 10 and 11). In the first part, we present the radar reflectivity structure of the WCB and corroborate its heterogeneous cloud structure and the occurrence of embedded convection. Radar observations in three different sub-regions of the WCB cloud band reveal the differing intensity of its embedded convection, which is qualitatively confirmed by the ascent rates of the online WCB trajectories. The detailed ascent behavior of the WCB trajectories reveals that very intense convection with ascent rates of 600 hPa in 30–60 min occurs, in addition to comparatively moderate convection with slower ascent velocities as reported in previous case studies. In the second part of this study, a systematic Lagrangian composite analysis based on online trajectories for two sub-categories of WCB-embedded convection – moderate and intense convection – is performed. Composites of the cloud and precipitation structure confirm the large influence of embedded convection: intense convection produces very intense local surface precipitation with peak values exceeding 6 mm in 15 min and large amounts of graupel of up to 2.8 g kg−1 in the middle troposphere (compared to 3.9 mm and 1.0 g kg−1 for the moderate convective WCB sub-category). In the upper troposphere, both convective WCB trajectory sub-categories form a small-scale and weak PV dipole, with one pole reaching weakly negative PV values. However, for this WCB case study – in contrast to previous case studies reporting convective PV dipoles in the WCB ascent region with the negative PV pole near the upper-level jet – the negative PV pole is located east of the convective ascent region, i.e., away from the upper-level jet. Moreover, the PV dipole formed by the intense convective WCB trajectories is weaker and has a smaller horizontal and vertical extent compared to a previous NAWDEX case study of WCB-embedded convection, despite faster ascent rates in this case. The absence of a strong upper-level jet and the weak vertical shear of the ambient wind in cyclone Sanchez are accountable for the weak diabatic PV modification in the upper troposphere. This implies that the strength of embedded convection alone is not a reliable measure for the effect of embedded convection on upper-level PV modification and its impact on the upper-level jet. Instead, the profile of vertical wind shear and the alignment of embedded convection with a strong upper-level jet play a key role for the formation of coherent negative PV features near the jet. Finally, these results highlight the large case-to-case variability of embedded convection not only in terms of frequency and intensity of embedded convection in WCBs but also in terms of its dynamical implications.


2020 ◽  
Author(s):  
Annika Oertel ◽  
Michael Sprenger ◽  
Hanna Joos ◽  
Maxi Boettcher ◽  
Heike Konow ◽  
...  

Abstract. Warm conveyor belts (WCBs) are dynamically important, strongly ascending and mostly stratiform cloud-forming airstreams in extratropical cyclones. Despite the predominantly stratiform character of the WCB's large-scale cloud band, convective clouds can be embedded in it. This embedded convection leads to a heterogeneously structured cloud band with locally enhanced hydrometeor content, intense surface precipitation and substantial amounts of graupel in the middle troposhere. Recent studies showed that embedded convection forms dynamically relevant quasi-horizontal potential vorticity (PV) dipoles in the upper troposphere. Thereby one pole can reach strongly negative PV values associated with inertial or symmetric instability near the upper-level PV waveguide, where it can interact with and modify the upper-level jet. This study analyses the characteristics of embedded convection in the WCB of cyclone Sanchez based on WCB online trajectories from a convection-permitting simulation and airborne radar observations during the North Atlantic Waveguide and Downstream Impact EXperiment (NAWDEX) field campaign (IOPs 10 and 11). In the first part, we present the radar reflectivity structure of the WCB and corroborate its heterogeneous cloud structure and the occurrence of embedded convection. Radar observations in three different sub-regions of the WCB cloud band reveal the differing intensity of its embedded convection, which is qualitatively confirmed by the ascent rates of the online WCB trajectories. The detailed ascent behaviour of the WCB trajectories reveals that very intense convection with ascent rates of 600 hPa in 30–60 min occurs, in addition to comparatively moderate convection with slower ascent velocities as reported in previous case studies. In the second part of this study, a systematic Lagrangian composite analysis based on online trajectories for two sub-categories of WCB-embedded convection – moderate and intense convection – is performed. Composites of the cloud and precipitation structure confirm the large influence of embedded convection: Intense convection produces locally very intense surface precipitation with peak values exceeding 6 mm in 15 minutes and large amounts of graupel of up to 2.8 g kg−1 in the middle troposphere (compared to 3.9 mm and 1.0 g kg−2 for the moderate convective WCB sub-category). In the upper troposphere, both convective WCB trajectory sub-categories form a small-scale and weak PV dipole, with one pole reaching weakly negative PV values. However, for this WCB case study – in contrast to previous case studies reporting convective PV dipoles in the WCB ascent region with the negative PV pole near the upper-level jet – the negative PV pole is located east of the convective ascent region, i.e., away from the upper-level jet. Moreover, the PV dipole formed by the intense convective WCB trajectories is weaker and has a smaller horizontal and vertical extent compared to a previous NAWDEX case study of WCB-embedded convection, despite faster ascent rates in this case. The absence of a strong upper-level jet and the weak vertical shear of the ambient wind in cyclone Sanchez are accountable for the weak diabatic PV modification in the upper troposphere. This implies that the strength of embedded convection alone is not a reliable measure for the effect of embedded convection on upper-level PV modification and its impact on the upper-level jet. Instead, the profile of vertical wind shear and the alignment of embedded convection with a strong upper-level jet play a key role for the formation of coherent negative PV features near the jet. Finally, these results highlight the large case-to-case variability of embedded convection not only in terms of frequency and intensity of embedded convection in WCBs but also in terms of its dynamical implications.


2020 ◽  
Vol 1 (1) ◽  
pp. 127-153 ◽  
Author(s):  
Annika Oertel ◽  
Maxi Boettcher ◽  
Hanna Joos ◽  
Michael Sprenger ◽  
Heini Wernli

Abstract. Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones. They can influence large-scale flow evolution by modifying the potential vorticity (PV) distribution during their cross-isentropic ascent. Although WCBs are typically described as slantwise-ascending and stratiform-cloud-producing airstreams, recent studies identified convective activity embedded within the large-scale WCB cloud band. However, the impacts of this WCB-embedded convection have not been investigated in detail. In this study, we systematically analyze the influence of embedded convection in an eastern North Atlantic WCB on the cloud and precipitation structure, on the PV distribution, and on larger-scale flow. For this reason, we apply online trajectories in a high-resolution convection-permitting simulation and perform a composite analysis to compare quasi-vertically ascending convective WCB trajectories with typical slantwise-ascending WCB trajectories. We find that the convective WCB ascent leads to substantially stronger surface precipitation and the formation of graupel in the middle to upper troposphere, which is absent for the slantwise WCB category, indicating the key role of WCB-embedded convection for precipitation extremes. Compared to the slantwise WCB trajectories, the initial equivalent potential temperature of the convective WCB trajectories is higher, and the convective WCB trajectories originate from a region of larger potential instability, which gives rise to more intense cloud diabatic heating and stronger cross-isentropic ascent. Moreover, the signature of embedded convection is distinctly imprinted in the PV structure. The diabatically generated low-level positive PV anomalies, associated with a cyclonic circulation anomaly, are substantially stronger for the convective WCB trajectories. The slantwise WCB trajectories lead to the formation of a widespread region of low-PV air (that still have weakly positive PV values) in the upper troposphere, in agreement with previous studies. In contrast, the convective WCB trajectories form mesoscale horizontal PV dipoles at upper levels, with one pole reaching negative PV values. On a larger scale, these individual mesoscale PV anomalies can aggregate to elongated PV dipole bands extending from the convective updraft region, which are associated with coherent larger-scale circulation anomalies. An illustrative example of such a convectively generated PV dipole band shows that within around 10 h the negative PV pole is advected closer to the upper-level waveguide, where it strengthens the isentropic PV gradient and contributes to the formation of a jet streak. This suggests that the mesoscale PV anomalies produced by embedded convection upstream organize and persist for several hours and therefore can influence the synoptic-scale circulation. They thus can be dynamically relevant, influence the jet stream and (potentially) the downstream flow evolution, which are highly relevant aspects for medium-range weather forecast. Finally, our results imply that a distinction between slantwise and convective WCB trajectories is meaningful because the convective WCB trajectories are characterized by distinct properties.


2020 ◽  
Author(s):  
Marcia Zilli ◽  
Neil Hart

<p>Austral wet season precipitation (October through March) in the subtropical parts of Brazil is related to the strength and position of the South American Convergence Zone (SACZ), one of the main features of the South American Monsoon System. The SACZ can be defined as the aggregation of individual tropical-extratropical (TE) cloud bands. Such TE cloud bands have deep convection and heavy rainfall linking the tropical convection over the Amazon rain forest to the mid-latitude weather systems in the Southern Ocean. Utilising a cloud band identification technique, which consists of an object-based algorithm that identifies TE interactions, we detected individual weather systems and explored their associated precipitation characteristics and changes since 1980. Each event is characterised by the total precipitation within the contour of the low-value OLR. For this, we considered three different datasets: observed precipitation from various weather stations over Brazil, gridded to a 0.25° lat/lon resolution; satellite-based rainfall from TRMM (version 3B42); and reanalysis-based precipitation from ERA5. Here we explore the spatial characteristics and associated precipitation statistics of the SACZ events identified through the proposed technique. The monthly spatial signature of the selected events is similar among the three data sources and corresponds to the SACZ location. The selected events account for 25% to 50% of the total monthly precipitation during the wet season, with the largest percentages occurring in December and January. Over South-eastern Brazil, we identified a reduction in the number of events and in total precipitation during these events, resulting in a reduction of their contribution to the total precipitation climatology during the last decade. The drying trends occur mostly in December; in January, the areas with reduced precipitation migrate northward and precipitation increases over Southern Brazil, suggesting that the poleward migration of the SACZ is more pronounced during these months. These results demonstrate the relationship between synoptic systems and the changes in the location of the SACZ described in recent studies. In the next steps, we will diagnose the reanalysed and climate-simulated circulations associated with these events, identifying possible mechanisms responsible for the poleward shift of the SACZ.</p>


2020 ◽  
Author(s):  
Qingyun Zhao ◽  
Wu Zhang

<p>The northwest China is located at the northeast of the Tibet Plateau, with a broad zone and complex terrain. The torrential rain occurred occasionally in the region. The formation of torrential rain and defensive ability of human beings are different due to the complex terrain. The storms occurred simultaneously with mountain torrents and debris flows, resulting in major casualties and economic losses. Studies have shown that most of the heavy rain occurred in the front of upper trough under the background of warm and wet southwest flow and near the shear line formed by both northerly and southerly at low level. A heavy rain occurred at the east side of the Tibet Plateau is completely different from previous features of heavy rain in the same region. It happened under the control of warm high ridge and south wind flow field in synoptic scale. Heavy precipitation has emerged in the warm region before large scale rain belt arrived. The torrential rain occurred in warm region mostly appeared in south China and rarely in north area. It has the feature of severe convective precipitation with weak disturbance in synoptic scale. The NWP model is capacity-constrained to forecast it.</p><p>A torrential rain in warm sector occurred at east side of Tibet Plateau, with the maximum hourly rainfall of 65mm, along with thunder and lightning. The evolution of mesoscale convective system was analyzed focusing on the development and propagation at by using the data of satellite, CINRAD, automatic weather stations, the conventional observation, and NCEP/NCAR reanalysis data. The results show that, due to the bell-like terrain of the east of Tibet Plateau and the block of Liupanshan mountain, a low-level jet formed as long as 200-300 km on 700 hPa. The low level jet triggered the development of convective cloud band. The forward propagation of Meso-β-scale convective cloud cluster (MCS) was the major cause of Torrential rain. The radar echoes showed obvious characteristics of low center of mass warm cloud precipitation, the zonal distribution in north and south of strong echo monomer greater than 35 dBz, the movement of convective cells with 1time/h along the low-level Jet from south to north. The significant train effect formed zonal torrential rain at east side of Tibet Plateau.</p><p>In the environmental conditions of high temperature and humidity, extreme instability of the atmosphere and a potential for severe convective weather, more attention should be paid to the formation and maintain of southwest low-level Jet. It is significant to the formation and development of the convective system in warm sector. In order to improve the forecast ability of NWP model, it is necessary to investigate the mechanics of the formation of torrential rain in the warm sector.</p><p><strong>Key words</strong>: East side of the Tibet Plateau; Low level Jet; Convective cloud band; Convective cells propagation; Torrential rain in Warm sector</p>


2020 ◽  
Vol 47 (1) ◽  
Author(s):  
Kyle Connour ◽  
Nicholas M. Schneider ◽  
Zachariah Milby ◽  
François Forget ◽  
Mohamed Alhosani ◽  
...  
Keyword(s):  

Author(s):  
Jingjing Chen ◽  
Huqiang Zhang ◽  
Chengzhi Ye ◽  
Hongzhuan Chen ◽  
Ruping Mo

While the Australia–Asian (A-A) monsoon is a prominent feature of weather and climate in China and Australia, there are significant differences in their dominant weather patterns and climate drivers. In order to explore different characteristics of atmospheric rivers (ARs) affecting weather and climate in these two countries, this paper compares two typical AR events that occurred in the boreal summer (austral winter) in 2016. The event in China produced record-breaking rainfall in North China, whereas the event in Australia was accompanied by a classic Northwest Cloud Band (NWCB) and produced a rainfall belt across the continent. Using global reanalysis products and ground-based observational data, we analysed the synoptic backgrounds, vertical structures, water vapour sources and relationship between ARs and cloud distributions. In both China and Australia, heavy precipitation was triggered by strong water vapour transport by ARs ahead of midlatitude frontal systems. The main differences between these two AR events and their associated rainfall effectiveness were that (i) the AR intensity in the Asian summer monsoon was stronger than that in the austral winter season over Australia; (ii) the centre of AR maximum moisture transport in China was around 850hPa, whereas in Australia, it was located at around 700hPa; and (iii) the AR-induced rainfall was heavier in China than in Australia. These differences were caused by numerous factors, including a lack of topographic influence, a dry climate background in Australia, and different interactions between warm and moist air conveyed by ARs from the tropics with cold air from the midlatitudes. We paid particular attention to the relationship between the Australian AR and its associated cloud structure and rainfall to understand precipitation efficiency of the NWCB. In addition, we assessed the forecast skills of an Australian numerical weather prediction system (ACCESS-APS2) for the two events with different lead times. The model produced reasonable forecasts of the occurrence and intensity of both AR events several days in advance, and the AR forecast skill was better than its forecasts of rainfall location and intensity. This demonstrates the value of using AR analysis in guiding extreme rainfall forecasts with longer lead time.


Sign in / Sign up

Export Citation Format

Share Document