scholarly journals Removal Role, Application and Effect of Nanocluster Rhenium (IV) Oxide (ReO2), Rhenium Trioxide (ReO3) and Rhenium (VII) Oxide (Re2O7) Thin Films Delivery in DNA/RNA of Cancer Cells under Synchrotron and Synchrocyclotron Radiations

2021 ◽  
pp. 150-194
Author(s):  
Alireza Heidari ◽  
Margaret Hotz ◽  
Nancy MacDonald ◽  
Victoria Peterson ◽  
Angela Caissutti ◽  
...  

In the current research, removal role, application and effect of nanocluster Rhenium (IV) Oxide (ReO2), Rhenium Trioxide (ReO3) and Rhenium (VII) Oxide (Re2O7) thin films delivery in DNA/RNA of cancer cells under synchrotron and synchrocyclotron radiations is investigated. The calculation of thickness and optical constants of Rhenium (IV) Oxide (ReO2), Rhenium Trioxide (ReO3) and Rhenium (VII) Oxide (Re2O7) removal role, application and effect of nanocluster Rhenium (IV) Oxide (ReO2), Rhenium Trioxide (ReO3) and Rhenium (VII) Oxide (Re2O7) thin films delivery in DNA/RNA of cancer cells under synchrotron and synchrocyclotron radiations produced using sol-gel method over glassy medium through a single reflection spectrum is presented. To obtain an appropriate fit for reflection spectrum, the classic Dude-Lorentz model for parametric di-electric function is used. The best fitting parameters are determined to simulate the reflection spectrum using Levenberg-Marquardt optimization method. The simulated reflectivity from the derived optical constants and thickness are in good agreement with experimental results. Keywords: Removal; Nanocluster Rhenium (IV) Oxide (ReO2); Rhenium Trioxide (ReO3) and Rhenium (VII) Oxide (Re2O7); Thin Films, Delivery; DNA/RNA; Cancer Cells; Synchrotron and Synchrocyclotron Radiations

2021 ◽  
pp. 106-149
Author(s):  
Alireza Heidari ◽  
Margaret Hotz ◽  
Nancy MacDonald ◽  
Victoria Peterson ◽  
Angela Caissutti ◽  
...  

In the current research, Rhodium (III) Oxide or Rhodium Sesquioxide (Rh2O3) and Rhodium (IV) Oxide (RhO2) effect on the stop growth of cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations. Is investigated. The calculation of thickness and optical constants of Rhodium (III) Oxide or Rhodium Sesquioxide (Rh2O3) and Rhodium (IV) Oxide (RhO2) Rhodium (III) Oxide or Rhodium Sesquioxide (Rh2O3) and Rhodium (IV) Oxide (RhO2) effect on the stop growth of cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations produced using sol–gel method over glassy medium through a single reflection spectrum is presented. To obtain an appropriate fit for reflection spectrum, the classic Drude–Lorentz model for parametric di–electric function is used. The best fitting parameters are determined to simulate the reflection spectrum using Lovenberg–Marquardt optimization method. The simulated reflectivity from the derived optical constants and thickness are in good agreement with experimental results. Keywords: Rhodium (III) Oxide or Rhodium Sesquioxide (Rh2O3) and Rhodium (IV) Oxide (RhO2); Stop Growth; Cancer Cells; Tissues and Tumors; Synchrotron and Synchrocyclotron Radiations


2021 ◽  
pp. 239-282
Author(s):  
Margaret Hotz ◽  
Nancy MacDonald ◽  
Victoria Peterson ◽  
Angela Caissutti ◽  
Elizabeth Besana ◽  
...  

In the current research, advanced studies on the effect of transition metal doped Iridium (IV) Oxide (IrO2) nano thin films in cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations is investigated. The calculation of thickness and optical constants of Iridium (IV) Oxide (IrO2) advanced studies on the effect of transition metal doped Iridium (IV) Oxide (IrO2) nano thin films in cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations produced using sol-gel method over glassy medium through a single reflection spectrum is presented. To obtain an appropriate fit for reflection spectrum, the classic Drude–Lorentz model for parametric di–electric function is used. The best fitting parameters are determined to simulate the reflection spectrum using Levenberg-Marquardt optimization method. The simulated reflectivity from the derived optical constants and thickness are in good agreement with experimental results. Keywords: Transition Metal; Doped; Iridium (IV) Oxide (IrO2); Nano Thin Films; Cancer Cells; Tissues and Tumors; Synchrotron and Synchrocyclotron Radiations


2021 ◽  
pp. 31-105
Author(s):  
Alireza Heidari ◽  
Margaret Hotz ◽  
Nancy MacDonald ◽  
Victoria Peterson ◽  
Angela Caissutti ◽  
...  

In the current research, annealing effects on the interband transition and optical constants of Ruthenium (IV) Oxide (RuO?) and Ruthenium (VIII) Oxide (RuO4) nano thin films in cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations is investigated. The calculation of thickness and optical constants of Ruthenium (IV) Oxide (RuO2) and Ruthenium (VIII) Oxide (RuO4) annealing effects on the interband transition and optical constants of Ruthenium (IV) Oxide (RuO2) and Ruthenium (VIII) Oxide (RuO4) nano thin films in cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations produced using sol-gel method over glassy medium through a single reflection spectrum is presented. To obtain an appropriate fit for reflection spectrum, the classic Drude-Lorentz model for parametric di-electric function is used. The best fitting parameters are determined to simulate the reflection spectrum using Lovenberg-Marquardt optimization method. The simulated reflectivity from the derived optical constants and thickness are in good agreement with experimental results. Keywords: Annealing, Interband Transition; Optical Constants; Ruthenium (IV) Oxide (RuO2) and Ruthenium (VIII) Oxide (RuO4); Nano Thin Films; Cancer Cells; Tissues and Tumors; Synchrotron and Synchrocyclotron Radiations


2021 ◽  
pp. 195-238
Author(s):  
Alireza Heidari ◽  
Margaret Hotz ◽  
Nancy MacDonald ◽  
Victoria Peterson ◽  
Angela Caissutti ◽  
...  

In the current research, catalytic effectiveness of synchrotron and synchrocyclotron radiations on Osmium Dioxide (OsO2) and Osmium Tetroxide (OsO4) nano capsules delivery in DNA/RNA of cancer cells is investigated. The calculation of thickness and optical constants of Osmium Dioxide (OsO2) and Osmium Tetroxide (OsO4) catalytic effectiveness of synchrotron and synchrocyclotron radiations on Osmium Dioxide (OsO2) and Osmium Tetroxide (OsO4) nano capsules delivery in DNA/RNA of cancer cells produced using sol-gel method over glassy medium through a single reflection spectrum is presented. To obtain an appropriate fit for reflection spectrum, the classic Drudge-Lorentz model for parametric di–electric function is used. The best fitting parameters are determined to simulate the reflection spectrum using Levenberg-Marquardt optimization method. The simulated reflectivity from the derived optical constants and thickness are in good agreement with experimental results. Keywords: Catalytic Effectiveness; Synchrotron and Synchrocyclotron Radiations; Osmium Dioxide (OsO2) and Osmium Tetroxide (OsO4) Nano Capsules; Delivery; DNA/RNA; Cancer Cells


2021 ◽  
pp. 16-60
Author(s):  
Alireza Heidari ◽  
Margaret Hotz ◽  
Nancy MacDonald ◽  
Victoria Peterson ◽  
Angela Caissutti ◽  
...  

In the current research, the effect of solution molarity on the structural, morphological, optical and electrical properties of nanostructured Cadmium Oxide (CdO) nano thin films as anti-cancer nano drug in cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations is investigated. The calculation of thickness and optical constants of Cadmium Oxide (CdO) the effect of solution molarity on the structural, morphological, optical and electrical properties of nanostructured Cadmium Oxide (CdO) nano thin films as anti-cancer nano drug in cancer cells, tissues and tumors under synchrotron and synchrocyclotron radiations produced using sol-gel method over glassy medium through a single reflection spectrum is presented. To obtain an appropriate fit for reflection spectrum, the classic Drude-Lorentz model for parametric di-electric function is used. The best fitting parameters are determined to simulate the reflection spectrum using Lovenberg-Marquardt optimization method. The simulated reflectivity from the derived optical constants and thickness are in good agreement with experimental results. Keywords: Tructural; Morphological; Optical and Electrical Properties; Nanostructured Cadmium Oxide (CdO); Nano Thin Films; Anti-Cancer Nano Drug; Cancer Cells; Tissues and Tumors; Synchrotron and Synchrocyclotron Radiations


2020 ◽  
Vol 183 ◽  
pp. 05002 ◽  
Author(s):  
Hamza Belkhanchi ◽  
Younes Ziat ◽  
Maryama Hammi ◽  
Charaf Laghlimi ◽  
Abdelaziz Moutcine ◽  
...  

In this study, we have investigated the surface analysis and optoelectronic properties on the synthesis of N-CNT/TiO2 composites thin films, using sol gel method for a dye synthetized solar cell (DSSC) which is found to be simple and economical route. The titanium dioxide based solar cells are an exciting photovoltaic candidate; they are promising for the realization of large area devices. That can be synthetized by room temperature solution processing, with high photoactive performance. In the present work, we stated comparable efficiencies by directing our investigation on obtaining Sol Gel thin films based on N-CNT/TiO2, by dispersing nitrogen (N) doped carbon nanotubes (N-CNTs) powders in titanium tetraisopropoxyde (TTIP). The samples were assessed in terms of optical properties, using UV—visible absorption spectroscopic techniques. After careful analysis of the results, we have concluded that the mentioned route is good and more efficient in terms of optoelectronic properties. The gap of “the neat” 0.00w% N-CNT/TiO2 is of 3eV, which is in a good agreement with similar gap of semiconductors. The incorporated “w%NCNTs” led to diminishing the Eg with increasing N-CNTs amount. These consequences are very encouraging for optoelectronic field.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 938
Author(s):  
Zheng-Yong Wang ◽  
Er-Tao Hu ◽  
Qing-Yuan Cai ◽  
Jing Wang ◽  
Hua-Tian Tu ◽  
...  

Solar selective absorbers have significant applications in various photothermal conversion systems. In this work, a global optimization method based on genetic algorithm was developed by directly optimizing the solar photothermal conversion efficiency of a nano-chromium (Cr) film-based solar selective absorber aiming to work at the specified working temperature and solar concentration. In consideration of the semi-transparent metal absorption layer employed in multilayered solar selective absorbers, the optical constants of ultrathin Cr film were measured by spectroscopic ellipsometer and introduced into the optimization process. The ultrathin Cr film-based solar selective absorber was successfully designed and fabricated by the magnetron sputtering method for the working temperature at 600 K and a solar concentration of 1 Sun. The measured reflectance spectra of the sample show a good agreement with the numerical simulations based on measured optical constants of ultrathin Cr film. In comparison, the simulated results by using the optical constants of bulk Cr film or literature data exhibit a large discrepancy with the experimental results. It demonstrates the significance of considering the actual optical constants for the semi-transparent metal absorption layer in the design of nano-metal film-based solar selective absorber.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Abdel-Sattar Gadallah ◽  
M. M. El-Nahass

We report manufacturing and characterization of low cost ZnO thin films grown on glass substrates by sol-gel spin coating method. For structural properties, X-ray diffraction measurements have been utilized for evaluating the dominant orientation of the thin films. For optical properties, reflectance and transmittance spectrophotometric measurements have been done in the spectral range from 350 nm to 2000 nm. The transmittance of the prepared thin films is 92.4% and 88.4%. Determination of the optical constants such as refractive index, absorption coefficient, and dielectric constant in this wavelength range has been evaluated. Further, normal dispersion of the refractive index has been analyzed in terms of single oscillator model of free carrier absorption to estimate the dispersion and oscillation energy. The lattice dielectric constant and the ratio of free carrier concentration to free carrier effective mass have been determined. Moreover, photoluminescence measurements of the thin films in the spectral range from 350 nm to 900 nm have been presented. Electrical measurements for resistivity evaluation of the films have been done. An analysis in terms of order-disorder of the material has been presented to provide more consistency in the results.


Sign in / Sign up

Export Citation Format

Share Document