scholarly journals DROUGHT ASSESSMENT USING THE RECONNAISSANCE DROUGHT INDEX (RDI): A CASE STUDY OF EASTERN MEDITERRANEAN, SEYHAN, CEYHAN AND ASI BASINS OF TURKEY

Author(s):  
Emre TOPÇU ◽  
◽  
Neslihan SEÇKİN ◽  

In this study, drought analysis was carried out in the region, which includes the Eastern Mediterranean, Seyhan, Ceyhan and Asi Basins located in the south of Turkey. In total, data from 35 meteorological stations has been analyzed. As a drought index, the Reconnaissance Drought Index (RDI) was utilised. The Thornthwaite method was selected in the calculation of Potential Evapotranspiration (PET). According to the results, the PET values of all stations have increased in recent years. 3, 6, 9, and 12 month RDI values have been plotted based on the hydrological years. As stated by RDI results, there was mild drought in the basin. The drought results obtained by Turkish State Meteorological Service (The Ministry of Agriculture and Forestry General Directorate of Meteorology) with the Standardized Precipitation Index (SPI) method were compared with the results in this study. In this study, drought mapping for RDI was carried out using the annual values of stations with common observation years to monitor visually spatial spread of the drought.

2019 ◽  
Vol 50 (3) ◽  
pp. 901-914 ◽  
Author(s):  
Hsin-Fu Yeh

Abstract Numerous drought index assessment methods have been developed to investigate droughts. This study proposes a more comprehensive assessment method integrating two drought indices. The Standardized Precipitation Index (SPI) and the Streamflow Drought Index (SDI) are employed to establish an integrated drought assessment method to study the trends and characteristics of droughts in southern Taiwan. The overall SPI and SDI values and the spatial and temporal distributions of droughts within a given year (November to October) revealed consistent general trends. Major droughts occurred in the periods of 1979–1980, 1992–1993, 1994–1995, and 2001–2003. According to the results of the Mann–Kendall trend test and the Theil–Sen estimator analysis, the streamflow data from the Sandimen gauging station in the Ailiao River Basin showed a 30% decrease, suggesting increasing aridity between 1964 and 2003. Hence, in terms of water resources management, special attention should be given to the Ailiao River Basin. The integrated analysis showed different types of droughts occurring in different seasons, and the results are in good agreement with the climatic characteristics of southern Taiwan. This study suggests that droughts cannot be explained fully by the application of a single drought index. Integrated analysis using multiple indices is required.


2010 ◽  
Vol 23 (7) ◽  
pp. 1696-1718 ◽  
Author(s):  
Sergio M. Vicente-Serrano ◽  
Santiago Beguería ◽  
Juan I. López-Moreno

Abstract The authors propose a new climatic drought index: the standardized precipitation evapotranspiration index (SPEI). The SPEI is based on precipitation and temperature data, and it has the advantage of combining multiscalar character with the capacity to include the effects of temperature variability on drought assessment. The procedure to calculate the index is detailed and involves a climatic water balance, the accumulation of deficit/surplus at different time scales, and adjustment to a log-logistic probability distribution. Mathematically, the SPEI is similar to the standardized precipitation index (SPI), but it includes the role of temperature. Because the SPEI is based on a water balance, it can be compared to the self-calibrated Palmer drought severity index (sc-PDSI). Time series of the three indices were compared for a set of observatories with different climate characteristics, located in different parts of the world. Under global warming conditions, only the sc-PDSI and SPEI identified an increase in drought severity associated with higher water demand as a result of evapotranspiration. Relative to the sc-PDSI, the SPEI has the advantage of being multiscalar, which is crucial for drought analysis and monitoring.


2019 ◽  
Vol 33 (15) ◽  
pp. 5015-5033 ◽  
Author(s):  
Ruqayah Mohammed ◽  
Miklas Scholz

AbstractInvestigating the spatiotemporal distribution of climate data and their impact on the allocation of the regional aridity and meteorological drought, particularly in semi-arid and arid climate, it is critical to evaluate the climate variability effect and propose sufficient adaptation strategies. The coefficient of variation, precipitation concentration index and anomaly index were used to evaluate the climate variability, while the Mann-Kendall and Sen’s slope were applied for trend analysis, together with homogeneity tests. The aridity was evaluated using the alpha form of the reconnaissance drought index (Mohammed & Scholz, Water Resour Manag 31(1):531–538, 2017c), whereas drought episodes were predicted by applying three of the commonly used meteorological drought indices, which are the standardised reconnaissance drought index, standardized precipitation index and standardized precipitation evapotranspiration index. The Upper Zab River Basin (UZRB), which is located in the northern part of Iraq and covers a high range of climate variability, has been considered as an illustrative basin for arid and semi-arid climatic conditions. There were general increasing trends in average temperature and potential evapotranspiration and decreasing trends in precipitation from the upstream to the downstream of the UZRB. The long-term analysis of climate data indicates that the number of dry years has temporally risen and the basin has experienced succeeding years of drought, particularly after 1994/1995. There was a potential link between drought, aridity and climate variability. Pettitt’s, SNHT, Buishand’s and von Neumann’s homogeneity test results demonstrated that there is an evident alteration in the mean of the drought and aridity between the pre- and post-alteration point (1994).


Author(s):  
Q. Li ◽  
M. Zeng ◽  
H. Wang ◽  
P. Li ◽  
K. Wang ◽  
...  

Abstract. The Huaihe River Basin having China's highest population density (662 persons per km2) lies in a transition zone between the climates of North and South China, and is thus prone to drought. Therefore, the paper aims to develop an appropriate drought assessment approach for drought assessment in the Huaihe River basin, China. Based on the Principal Component Analysis of precipitation, evapotranspiration, soil moisture and runoff, the three latter variables of which were obtained by use of the Xin'anjiang model, a new multivariate drought index (MDI) was formulated, and its thresholds were determined by use of cumulative distribution function. The MDI, the Standardized Precipitation Index (SPI) and the self-calibrating Palmer Drought Severity Index (sc-PDSI) time series on a monthly scale were computed and compared during 1988, 1999/2000 and 2001 drought events. The results show that the MDI exhibited certain advantages over the sc-PDSI and the SPI in monitoring drought evolution. The MDI formulated by this paper could provide a scientific basis for drought mitigation and management, and references for drought assessment elsewhere in China.


2019 ◽  
Vol 43 (5) ◽  
pp. 627-642 ◽  
Author(s):  
Luis Eduardo Quesada-Hernández ◽  
Oscar David Calvo-Solano ◽  
Hugo G Hidalgo ◽  
Paula M Pérez-Briceño ◽  
Eric J Alfaro

The Central American Dry Corridor (CADC) is a sub-region in the isthmus that is relatively drier than the rest of the territory. Traditional delineations of the CADC’s boundaries start at the Pacific coast of southern Mexico, stretching south through Central America’s Pacific coast down to northwestern Costa Rica (Guanacaste province). Using drought indices (Standardized Precipitation Index, Modified Rainfall Anomaly Index, Palmer Drought Severity Index, Palmer Hydrological Drought Index, Palmer Drought Z-Index and the Reconnaissance Drought Index) along with a definition of aridity as the ratio of potential evapotranspiration (representing demand of water from the atmosphere) over precipitation (representing the supply of water), we proposed a CADC delineation that changes for normal, dry and wet years. The identification of areas that change their classification during extremely dry conditions is important because these areas may indicate the location of future expansion of aridity associated with climate change. In the same way, the delineation of the CADC during wet extremes allows the identification of locations that remain part of the CADC even during the wettest years and that may require special attention from the authorities.


2013 ◽  
Vol 781-784 ◽  
pp. 2292-2295
Author(s):  
Qiong Lian Chen ◽  
Jing Wen Xu ◽  
Shao Wei Shi ◽  
Xin Li ◽  
Peng Wang

Sichuan Hilly Area is selected as the study area. This paper uses ten brightness temperature AMSR-E data during 2006-2010. It constructs 8 preferred drought index by using the polarization ratio method (Polarization Rations, PR). This paper makes Pearson correlation analysis by using the 8 preferred drought index and the soil moisture of study area. Meanwhile, Linear regression and correlation analysis with the Daily precipitation and the standardized precipitation index SPI are also made. The results show: for example, in December 2009, drought index DI74, DI92, DI96 were basically consistent with the spatial distribution. Drought degree has an increasing trend from southeast to northwest regional gradually. And with the drought conditions in hilly area of actual and daily precipitation, SPI correlation between interannual and Sichuan are proper. So the drought index is more suitable for drought study in hilly area of central Sichuan Basin.


2014 ◽  
Vol 7 (1) ◽  
pp. 243-270
Author(s):  
M. Ziese ◽  
U. Schneider ◽  
A. Meyer-Christoffer ◽  
K. Schamm ◽  
J. Vido ◽  
...  

Abstract. The Global Precipitation Climatology Centre Drought Index (GPCC-DI) provides estimations of precipitation anomalies with respect to long term statistics. It is a combination of the Standardized Precipitation Index with adaptations from Deutscher Wetterdienst (SPI-DWD) and the Standardized Precipitation Evapotranspiration Index (SPEI). Precipitation data were taken from the Global Precipitation Climatology Centre (GPCC) and temperature data from NOAA's Climate Prediction Center (CPC). The GPCC-DI is available with several averaging periods of 1, 3, 6, 9, 12, 24 and 48 months for different applications. Since spring 2013, the GPCC-DI is calculated operationally and available back to January 2013. Typically it is released at the 10th day of the following month, depending on the availability of the input data. It is calculated on a~regular grid with 1° spatial resolution. All averaging periods are integrated into one netCDF-file for each month. This dataset can be referenced by the DOI:10.5676/DWD_GPCC/DI_M_100 and is available free of charge from the GPCC website ftp://ftp.dwd.de/pub/data/gpcc/html/gpcc_di_doi_download.html.


2021 ◽  
Vol 7 (12) ◽  
pp. 2130-2149
Author(s):  
Shashi Shankar Ojha ◽  
Vivekanand Singh ◽  
Thendiyath Roshni

Drought assessment is crucial for effective water resources management in a river basin. Drought frequency has increased worldwide in recent years due to global warming. In this paper, an attempt is made to assess the meteorological drought in the Punpun river basin, India using two globally accepted drought indices namely, Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI). The SPI and SPEI at 1-, 3-, 6-, 9-, and 12-month timescale were obtained to analyze the temporal variability of different drought levels. Correlation analysis of available observed data and gridded data has been carried out and the correlation coefficient was found to be 0.956. Hence gridded rainfall data from the year 1991 to 2020 is used for further analysis. Potential evapotranspiration (PET) used in the calculation of SPEI was computed by the Thornthwaite method. Water deficit was observed throughout as there is a decrease in rainfall and an increase in PET during the selected period. The results show that the period 2004 to 2006 and 2009 to 2010 years are observed as drought periods by both indices for almost all timescale. The intensity and duration of drought have increased after 2004. A negative trend of both the indices have been observed in all seasons on all timescale, which clearly shows a transition from near normal to moderately dry during the selected time period. The highest correlation between both the indices is for the 12-month scale with R² value 0.92 and the RMSE value 0.28. The main outcome of this study is that both SPI and SPEI show a strong correlation on same time scales adopted in this study. The dependency of SPEI on temperature is also observed in this study. Doi: 10.28991/cej-2021-03091783 Full Text: PDF


Sign in / Sign up

Export Citation Format

Share Document