scholarly journals The influence of metallostatic pressure, grain refiner, and modification on the critical solid fraction (CSF) of cast A380 alloy

2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Murat Çolak ◽  
◽  
Derya Dispinar ◽  

In this work, porosity formation with regard to the change in the metallostatic pressure was investigated. Different geometry was generated to simulate the effect of pressure on critical solid fraction. A380 alloy was sand cast. Additionally, the effect of grain refiner and modifiers was also investigated. Samples were subjected to X-ray radiography and density measurement to quantify the pore size and distribution.

2019 ◽  
Author(s):  
KAIKAI MA ◽  
Peng Li ◽  
John Xin ◽  
Yongwei Chen ◽  
Zhijie Chen ◽  
...  

Creating crystalline porous materials with large pores is typically challenging due to undesired interpen-etration, staggered stacking, or weakened framework stability. Here, we report a pore size expansion strategy by self-recognizing π-π stacking interactions in a series of two-dimensional (2D) hydrogen–bonded organic frameworks (HOFs), HOF-10x (x=0,1,2), self-assembled from pyrene-based tectons with systematic elongation of π-conjugated molecular arms. This strategy successfully avoids interpene-tration or staggered stacking and expands the pore size of HOF materials to access mesoporous HOF-102, which features a surface area of ~ 2,500 m2/g and the largest pore volume (1.3 cm3/g) to date among all reported HOFs. More importantly, HOF-102 shows significantly enhanced thermal and chemical stability as evidenced by powder x-ray diffraction and N2 isotherms after treatments in chal-lenging conditions. Such stability enables the adsorption of dyes and cytochrome c from aqueous media by HOF-102 and affords a processible HOF-102/fiber composite for the efficient photochemical detox-ification of a mustard gas simulant.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Kuo Men ◽  
Jian-Rong Dai ◽  
Ming-Hui Li ◽  
Xin-Yuan Chen ◽  
Ke Zhang ◽  
...  

Purpose. To develop a dual energy imaging method to improve the accuracy of electron density measurement with a cone-beam CT (CBCT) device.Materials and Methods. The imaging system is the XVI CBCT system on Elekta Synergy linac. Projection data were acquired with the high and low energy X-ray, respectively, to set up a basis material decomposition model. Virtual phantom simulation and phantoms experiments were carried out for quantitative evaluation of the method. Phantoms were also scanned twice with the high and low energy X-ray, respectively. The data were decomposed into projections of the two basis material coefficients according to the model set up earlier. The two sets of decomposed projections were used to reconstruct CBCT images of the basis material coefficients. Then, the images of electron densities were calculated with these CBCT images.Results. The difference between the calculated and theoretical values was within 2% and the correlation coefficient of them was about 1.0. The dual energy imaging method obtained more accurate electron density values and reduced the beam hardening artifacts obviously.Conclusion. A novel dual energy CBCT imaging method to calculate the electron densities was developed. It can acquire more accurate values and provide a platform potentially for dose calculation.


2003 ◽  
Vol 802 ◽  
Author(s):  
R. G. Haire ◽  
S. Heathman ◽  
T. Le Bihan ◽  
A. Lindbaum ◽  
M. Iridi

ABSTRACTOne effect of pressure on elements and compounds is to decease their interatomic distances, which can bring about dramatic perturbations in their electronic nature and bonding, which can be reflected in changes in physical and/or chemical properties. One important issue in the actinide series of elements is the effect of pressure on the 5f-electrons. We have probed changes in electronic behavior with pressure by monitoring structure by X-ray diffraction, and have studied several actinide metals and compounds from thorium through einsteinium. These studies have employed angle dispersive diffraction using synchrotron radiation, and energy dispersive techniques via conventional X-ray sources. The 5f-electrons of actinide metals and their alloys are often affected significantly by pressure, while with compounds, the structural changes are often not linked to the involvement of 5 f-electron. We shall present some of our more recent findings from studies of selected actinide metals, alloys and compounds under pressure. A discussion of the results in terms of the changes in electronic configurations and bonding with regard to the element's position in the series is also addressed.


2003 ◽  
Vol 9 (5) ◽  
pp. 419-427 ◽  
Author(s):  
Victor A. Streltsov ◽  
Philip N.H. Nakashima ◽  
Andrew W.S. Johnson

Current X-ray diffraction techniques intended for “ideally imperfect” specimens provide structure factors only on a relative scale and ever-present multiple scattering in strong low-angle Bragg reflections is difficult to correct. Multiple scattering is implicit in the quantitative convergent beam electron diffraction (QCBED) method, which provides absolutely scaled structure factors. Conventional single crystal X-ray diffraction has proved adequate in softer materials where crystal perfection is limited. In hard materials, the highly perfect nature of the crystals is often a difficulty, due to the inadequacy of the conventional corrections for multiple scattering (extinction corrections). The present study on α-Al2O3 exploits the complementarity of synchrotron X-ray measurements for weak and medium intensities and QCBED measurement of the strong low-angle reflections. Two-dimensional near zone axis QCBED data from different crystals at various accelerating voltages, thicknesses, and orientations have been matched using Bloch-wave and multislice methods. The reproducibility of QCBED data is better than 0.5%. The low-angle strong QCBED structure factors were combined with middle and high-angle extinction-free data from synchrotron X-ray diffraction measurements. Static deformation charge density maps for α-Al2O3 have been calculated from a multipole expansion model refined using the combined QCBED and X-ray data.


2001 ◽  
Vol 714 ◽  
Author(s):  
Kazuhiko Omote ◽  
Shigeru Kawamura

ABSTRACTWe have successively developed a new x-ray scattering technique for a non-destructive determination of pore-size distributions in porous low-κ thin films formed on thick substrates. The pore size distribution in a film is derived from x-ray diffuse scattering data, which are measured using offset θ/2θ scans to avoid strong specular reflections from the film surface and its substrate. Γ-distribution mode for the pores in the film is used in the calculation. The average diameter and the dispersion parameter of the Γ-distribution function are varied and refined by computer so that the calculated scattering pattern best matches to the experimental pattern. The technique has been used to analyze porous methyl silsesquioxane (MSQ) films. The pore size distributions determined by the x-ray scattering technique agree with that of the commonly used gas adsorption technique. The x-ray technique has been also used successfully determine small pores less than one nanometer in diameter, which is well below the lowest limit of the gas adsorption technique.


1991 ◽  
Vol 74 (10) ◽  
pp. 2538-2546 ◽  
Author(s):  
Susan Krueger ◽  
Gabrielle G. Long ◽  
David R. Black ◽  
Dennis Minor ◽  
Pete R. Jemian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document