scholarly journals Evaluation of Compacted Laterite Soil Admixed with Cement and Hair Fibres as Road Construction Material

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Johnson Rotimi OLUREMI ◽  
Solomon Idowu Adedokun ◽  
Paul Yohanna ◽  
David A. Fadiran ◽  
Idris O. Azeez

A natural lateritic soil classified as A-5 (4) based on American Association of State Highway and Transportation Officials (AASHTO) soil classification system and ML-CL according to Unified Soil Classification System (USCS), was admixed with ordinary Portland cement and synthetic hair fibres (SHF) was evaluated as road construction material. Soil test specimens were made by admixing lateritic soil with up to 4% cement  in 1 % step concentration and up to 12% SHF in step concentration of 2 % by dry weight of the soil and were subjected to British Standard Light (BSL) or Standard Proctor method of compaction, unconfined compressive strength (UCS) and California bearing ratio (CBR) tests. Results indicated a decrease in the values of optimum moisture content (OMC) while no general trend was established for maximum dry density (MDD). The values of UCS and CBR increased as the content of both cement and SHF increased. Analysis of variance (ANOVA) of the results shows some level of statistical significance on some geotechnical properties considered. Regression analysis on the results using Minitab R15 software shows that MDD, OMC, cement and SHF significantly influenced the UCS and CBR values of the stabilized soil with correlation coefficient value (R2) of 82.9 and 83.3% respectively. Based on the results, an optimal blend of 3% cement 9% SHF significantly improved  the soil properties and is recommended  for improving the geotechnical properties of cement/synthetic hair fibre treated lateritic soil as road construction material.

2021 ◽  
Vol 47 (1) ◽  
pp. 156-163
Author(s):  
Oluremi Johnson Rotimi ◽  
Bamigboye Gideon Olukunle ◽  
Afolayan Olaniyi Diran ◽  
B. Iyanda Olayinka ◽  
A. Bello Usman

Effect of spent calcium carbide (SCC) on index and strength properties of lateritic soil at differ- ent compactive efforts was assessed in this study as potential means of improving the geotechnical properties of the subsoil as well as disposing of SCC as waste. SCC was admixed with the soil using 0 to 10 % by dry weight of soil at an incremental rate of 2%. The following tests were carried out on the samples: specific gravity, Atterberg limit, particle size distribution, compaction, and California bearing ratio (CBR). Compaction and California Bearing Ratio (CBR) tests were carried out using British Standard light (BSL), West African Standard (WAS), and British Standard heavy (BSH) on both the natural and stabilized soil samples. From the investigation, atterberg limits show a reduction in the plasticity index with increasing content of SCC. The maximum dry density of the soil decreased with increasing SCC content and increased with an increase in compactive energies (BSL<WAS<BSH), while and optimum moisture content (OMC) increased correspondingly. Also, soaked and unsoaked CBR values of the stabilized lateritic soil showed an increase in strength with higher compactive effort, and SCC content up to 4% SCC addition and after that decreased in value. Based on these results, spent calcium carbide improved the geotechnical properties of this lateritic soil, and 4% SCC is recommended for its stabilization as subgrade material for pavement construction, thereby serving as an effective method of disposing SCC towards promoting a green and sustainable environment.


2016 ◽  
Vol 2 (11) ◽  
pp. 568-575 ◽  
Author(s):  
Emeka Segun Nnochiri ◽  
Olumide Moses Ogundipe

This study assesses the geotechnical properties of lateritic soil stabilized with Ground-nut Husk Ash. Preliminary tests were carried out on the natural soil sample for identification and classification purposes, while consistency limits tests were thereafter carried out as well. Engineering property tests such as California Bearing Ratio (CBR), Unconfined Compressive Strength (UCS) and compaction tests were performed on both the natural soil sample and the stabilized lateritic soil, which was stabilized by adding Ground-nut Husk Ash, GHA, in percentages of 2, 4, 6, 8 and 10 by weight of the soil.  The results showed that the addition of GHA enhanced the strength of the soil sample. The Maximum Dry Density (MDD) reduced from 1960 kg/m3 to 1760 kg/m3 at 10% GHA by weight of soil. The Optimum Moisture Content (OMC) increased from 12.70% to 14.95%, also at 10% GHA by weight of soil. The unsoaked CBR values increased from 24.42% to 72.88% finally, the UCS values increased from 510.25 kN/m2 to 1186.46 kN/m2, for both CBR and UCS, the values were at 10% GHA by weight of soil. It was therefore concluded that GHA performs satisfactorily as a cheap stabilizing agent for stabilizing lateritic soil especially for subgrade and sub base purposes in road construction.


2019 ◽  
Vol 14 (2) ◽  
pp. 95-106
Author(s):  
Oluwaseun Adetayo ◽  
Olugbenga Amu ◽  
Sunday Alabi

AbstractThis study investigated the suitability of pulverized snail shell (PSS) as partial replacement of cement stabilized soil in foundation constructions. Preliminary and engineering tests were carried out on the soil samples. The optimum cement content fixed at 11% in correlation to Unified Soil Classification System, the PSS was introduced at varying percentages of 2%, 4%, 6%, 8% and 10%. Results revealed that, addition of PSS and 11% cement to lateritic soil caused a reduction in both liquid limits and plasticity index and an increased in plastic limits for all samples. Engineering tests showed the maximum dry density at optimum cement increased from 1493.34 ± 103.58 kg.m−3 to 1632 ± 435.81 kg.m−3 for sample A; 1476.77 ± 367.51 kg.m−3 to 1668 ± 202.58 kg.m−3 for sample B; 1460.77 ± 623.58 kg.m−3 to 1651 ± 135.45 kg.m−3 for sample C. The CBR recorded highest value at 4%PSS optimum cement for all samples. The addition of pulverized snail shell increased the strength of cement stabilized lateritic soil for structural foundation construction.


2013 ◽  
Vol 824 ◽  
pp. 21-28 ◽  
Author(s):  
Adrian O. Eberemu ◽  
Joseph E. Edeh ◽  
A.O. Gbolokun

Lateritic soil treated with up to 20% glass cullet content was subjected to grain-size distribution, consistency tests, specific gravity tests, compaction using standard proctor, California Bearing Ratio (CBR), unconfined compression test, direct shear test and permeability tests. The study showed increase in grain sizes resulting in coarser soil, changes in moisture-density relationship, resulting in lower Optimum Moisture Content (OMC) and higher Maximum Dry Density (MDD), an increase in CBR, an increase in unconfined compressive strength (UCS); changes in cohesion-frictional angle relationship resulting in lower cohesion (c) and higher angle of internal friction (Φ) and an increase in co-efficient of permeability, k, with increased glass cullet treatment. These results show an improvement in geotechnical properties, making glass cullet-lateritic soil blend; a potentially good highway material and suggesting the suitability of the blend for embankments, structural and non-structural fill and retaining wall backfill.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Hussien Aldeeky ◽  
Omar Al Hattamleh

The three major steel manufacturing factories in Jordan dump their byproduct, steel slag, randomly in open areas, which causes many environmental hazardous problems. This study intended to explore the effectiveness of using fine steel slag aggregate (FSSA) in improving the geotechnical properties of high plastic subgrade soil. First soil and fine steel slag mechanical and engineering properties were evaluating. Then 0%, 5%, 10%, 15%, 20%, and 25% dry weight of soil of fine steel slag (FSSA) were added and mixed into the prepared soil samples. The effectiveness of the FSSA was judged by the improvement in consistency limits, compaction, free swell, unconfined compression strength, and California bearing ratio (CBR). From the test results, it is observed that 20% FSSA additives will reduce plasticity index and free swell by 26.3% and 58.3%, respectively. Furthermore, 20% FSSA additives will increase the unconfined compressive strength, maximum dry density, and CBR value by 100%, 6.9%, and 154%. By conclusion FSSA had a positive effect on the geotechnical properties of the soil and it can be used as admixture in proving geotechnical characteristics of subgrade soil, not only solving the waste disposal problem.


2021 ◽  
Vol 53 (5) ◽  
pp. 210510
Author(s):  
Zalwango Teddy ◽  
Bazairwe Annette ◽  
Safiki Ainomugisha

Expansive soils constitute one of the most frequently encountered and challenging soils to geotechnical engineers. This study assessed the possibility of utilizing sugarcane bagasse ash (SCBA) by partially replacing slaked lime to stabilize expansive clay soils. The soil samples were picked from Muduuma area, Mpigi district, Central Uganda. Experimental tests of linear shrinkage (LS), plasticity index (PI), and California Bearing Ratio (CBR) were conducted on both unstabilized soil and SCBA-lime treated samples. The SCBA-lime mixture was prepared by partially replacing 5% lime with SCBA at 2, 4, 6, 8, and 10% by weight. Hence, SCBA was used in proportions of 0.1, 0.2, 0.3, 0.4, and 0.5% by dry weight of the soil. The addition of lime greatly lowered the PI and LS, which later increased with the addition of the SCBA. The maximum dry density was generally lowered with the addition of lime and SCBA, from 1.87 g/cm3 to 1.58%. The CBR increased with SCBA-lime addition from 12% for unstabilized soil up to 48% at 6% SCBA replacement. The optimum lime replacement was established as 6% SCBA lime replacement based on CBR criteria. At the 6% optimum, the optimum moisture content (OMC) was 1.7 Mg/m3, LS was 10%, and PI was 20%. This study demonstrated the potentiality of SCBA as a novel construction material, specifically by partially reducing the usage of the unsustainable, non-environmentally friendly lime. It is also expected to enable using currently unsuitable clays from the region.


Author(s):  
K Ishola

This study investigated the compaction effect of unmodified and modified lateritic soil using cement-mango leaf waste ash (C- MLWA). The lateritic soil used was classified as A-7-6 (9) and CL using AASHTO soil classification and USCS respectively. The soil was treated with a blended cement of 1%, 2 % and 6 % mango leaf waste ash by dry weight of the soil sample. Effect of cement- mango leaf ash on the modified soil was studied with respect to compaction characteristics, plasticity characteristics, particle size distribution, California bearing ratio, and unconfined compressive strength. Compactive efforts used were British Standard Light (BSL) and West African Standard and the results were examined utilizing analysis of variance (ANOVA) Method. The research shows an increase in MDD with the corresponding decrease in OMC as the percentages of cement content increase with a constant 6% mango leaf waste ash for all the tests carried out for the sample. This was due to the agglomeration of large particles (sand and gravel) consuming bigger space with a comparable drop in dry density and in light of additional moisture needed for the hydration of cement and the pozzolanic response of mango leaf waste ash.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
A. K. Lawer ◽  
S. I. K. Ampadu ◽  
F. Owusu-Nimo

AbstractWeak lateritic subgrades are more often than not encountered during road construction in Ghana. This makes it necessary to find economically efficient ways to improve the engineering properties of these marginal lateritic soils. The objective of this study is to investigate the effects of coconut fiber (30 mm, 60 mm and 90 mm fiber lengths) and palm fiber on some geotechnical characteristics of a weak lateritic subgrade. The lateritic soil was collected from the KNUST campus and blended with various percentages of the fibers varying between 0.1 and 1.0% by weight of dry soil. The mixed materials were then subjected to various laboratory tests including compaction, unconfined compression test and 4-day-soaked California bearing ratio test. From the results, it was observed that increasing the fiber content decreased the maximum dry density and increased the optimum moisture content. The inclusion of the fiber increased the soaked CBR from 7 to a maximum of 18, 22, and 25 at 30 mm, 60 mm and 90 mm fiber lengths, respectively. The unconfined compressive strength also increased from 140 to a maximum of 353 kPa, 398 kPa and 447 kPa, respectively, for 30 mm, 60 mm and 90 mm fiber lengths. Similarly, palm fiber inclusion recorded maximum soaked CBR value of 14% and UCS value of 352 kPa. These peak values were obtained at optimum fiber contents of 0.2%.


2018 ◽  
Vol 6 (1) ◽  
pp. 78
Author(s):  
Layade Gideon Oluyinka ◽  
Ogunkoya Charles Olubunmi

Lateritic soils that overburden Mohammad Buhari Estate in Abeokuta area of Ogun State, Nigeria is in great use for road construction. However, little is known of their geotechnical properties and suitability as base, sub-based and sub-grade materials for road construction. This study is aimed at utilizing in accordance with regulatory standards of Nigeria, the geotechnical techniques to investigate the properties of this lateritic soil. The samples were collected at 0. 25m deep at different locations and were subjected to the following laboratory test; Particle size analysis, Atterberg limits test, Compaction test, Californian Bearing Ratio test, Moisture content and Specific gravity test. The result shows un-soaked CBR test from 12.52-55.84 %. The specific gravity results range from 2.57-2.89 while the optimum moisture content and maximum dry density range from 18.20-28.30% and 1.48-1.81mg/m3 respectively. The liquid limit, plastic limit and plastic index ranges from 12.0 to 40.1%, 10.0 to 22.0% and 2.8 to 20.4% respectively. This implies that lateritic soil present throughout the study area is suitable for use as sub-base and base materials since the geotechnical properties are fairly within the regulatory standards of Nigeria.


2018 ◽  
Vol 162 ◽  
pp. 01006
Author(s):  
Hussein Karim ◽  
Makki Al-Recaby ◽  
Maha Nsaif

The problems of soft clayey soils are taken in considerations by many Iraqi geologists and civil engineers, because about 35% of the Iraqi clay soils (especially southern Iraq) are weak. Thus, it is necessary to improve the properties of such soils for road construction by means of using of various stabilizers such as sawdust ash. The main goal of the present study is to stabilize soft clay models with sawdust ash (SDA) additive using different percentages (0, 2, 4, 6, 8 and 10% by dry weight of soil). The results revealed that the additive has adverse effects on the property of soil indices by increasing its liquid limit and plasticity index due to clay content. The mixture of sawdust ashes with soft clay soils improves most other physical and mechanical properties of the soil, as expressed by a general reduction in specific gravity and maximum dry density (MDD), as well as a reduction in the compression coefficients (Cc and Cr) with an increase in SDA content. While increasing the optimum moisture content (OMC) and the undrained shear strength (cu) with the increase in SDA content. The stabilized soils (with 4 and 10% ash content) resulted in low CBR values (1.6-1.2%) which can be used as sub-base. The SDA can be considered as a cheap and acceptable stabilizing agent in road construction for improving most of the geotechnical properties of the soft clayey soil.


Sign in / Sign up

Export Citation Format

Share Document