scholarly journals Mitigation of Earthquake Responses Using SMA Supplemented Base-Isolation Devices for Benchmark Building

2021 ◽  
Vol 2 (4) ◽  
pp. 22-30
Author(s):  
Ashish R. Akhare

The efficiency of traditional isolation bearings is doubted for near-field earthquakes because these bearings undergo large displacement. A comparative study of different base isolation systems of base-isolated benchmark building is carried out in the present study. The study is based on assumption that buildings are bi-directionally acted upon by near-field earthquakes for assessing their relative performance in seismic control of the benchmark building. The time history variations of important response parameters and evaluation criteria of the benchmark building has been studied for assessing the effectiveness of the isolation systems. The Shape Memory Alloy (SMA) is utilized with elastomeric bearings and friction bearings to study the effectiveness of SMA wires with different isolators. The benchmark building is modelled as a discrete linear elastic shear structure having three degrees of- freedom at each floor level. Time domain dynamic analysis of this building has been carried out with the help of constant average acceleration Newmark’s method and equilibrium of non-linear forces has been taken care by fourth order Runge-Kutta method. The comparative performance of various isolation systems has been studied with uniform and hybrid combinations. The hybrid combination of SMA supplemented bearings works out the better isolation system keeping in view of the percentage reduction in evaluation criteria for smart base-isolated benchmark building. Furthermore, it is shown that, the functionality of SMA wire is not efficient with Lead Rubber Bearing system, as it is able to control displacement but increases the acceleration, base shear, story drift and isolation forces.

2011 ◽  
Vol 11 (06) ◽  
pp. 1201-1228 ◽  
Author(s):  
AJAY SHARMA ◽  
R. S. JANGID

The influence of high initial isolator stiffness on the response of a base-isolated benchmark building is investigated. The base-isolated building is modeled as a three-dimensional linear-elastic structure having three degrees-of-freedom at each floor level. The time-history analysis of this building is carried out by solving the governing equations of motion using Newmark-beta method along with an iterative predictor–corrector approach. The force–deformation behavior of the isolation system is modeled by a bilinear law, which can be effectively used to model all isolation systems in practice. Three near-field earthquakes with bidirectional ground motions are considered. Structural response parameters such as absolute top floor acceleration, base shear, and base displacement are chosen for investigating the effects of high initial isolator stiffness. It was observed that the high initial isolator stiffness of the isolation system excites the higher modes in the base-isolated building and increases the top floor acceleration. Such a phenomenon can be detrimental to the sensitive instruments placed in the isolated structure. On the other hand, both the base displacement and base shear reduce marginally due to increase in the initial isolator stiffness. Further, the influences of high initial isolator stiffness are found to dependent on the period and characteristic strengths of the base isolation system.


2012 ◽  
Vol 28 (3) ◽  
pp. 1147-1163 ◽  
Author(s):  
Osman E. Ozbulut ◽  
Stefan Hurlebaus

This paper presents a comparative seismic performance assessment of super-elastic-friction base isolator (S-FBI) systems in improving the response of bridges under near-field earthquakes. The S-FBI system consists of a steel-Teflon sliding bearing and a superelastic shape memory alloy (SMA) device. The other isolation systems considered here are lead rubber bearing (LRB), friction pendulum system (FPS), and resilient-friction base isolator (R-FBI). Each isolation system is designed to provide the same isolation period and characteristic strength. Nonlinear time-history analyses of an isolated bridge are performed to compare the performance of various isolation systems. The results indicate that the S-FBI system shows superior performance in reducing deck displacement response and effectively limits permanent bearing deformation, whereas residual deformations are present for the other isolation systems in some cases. It is also observed that the LRB system has the largest deck drifts while the FPS system and R-FBI system produce the smallest peak deck acceleration and base shear.


Author(s):  
Henri Gavin ◽  
Julie Thurston ◽  
Chicahiro Minowa ◽  
Hideo Fujitani

A large-scale base-isolated steel structural frame was tested at the shaking table laboratory of the National Research Institute for Earth Sciences and Disaster Prevention. These collaborative experiments featured auto-adaptive media and devices to enhance the performance of passive base isolation systems. The planning of these experiments involved determining appropriate device control methods, the development of a controllable damping device with fail-safe characteristics, and the evaluation of the performance of the controlled isolation system subjected to strong ground motion with pronounced near-field effects. The results of the planning study and their large-scale experimental confirmation provide guidelines for the development and implementation of auto-adaptive damping devices for full scale structures.


2020 ◽  
Vol 6 (7) ◽  
pp. 1314-1327
Author(s):  
Mahmoud Ahmadinejad ◽  
Alireza Jafarisirizi ◽  
Reza Rahgozar

Base isolation is one of the effective ways for controlling civil engineering structures in seismic zone which can reduce seismic demand. Also is an efficient passive control mechanism that protects its superstructure during an earthquake. However, residual displacement of base-isolation systems, resulting from strong ground motions, remain as the main obstacle in such system’s serviceability after the earthquake. Shape Memory Alloys (SMA) is amongst the newly introduced smart materials that can undergo large nonlinear deformations with considerable dissipation of energy without having any permanent displacement afterward. This property of SMA may be utilized for designing of base isolation system to increase the structure’s serviceability. Here, a proposed semi-active isolation system combines laminated rubber bearing system with shape memory alloy, to take advantage of SMAs high elastic strain range, in order to reduce residual displacements of the laminated rubber bearing. Merits of the system are demonstrated by comparing it to common laminated rubber bearing isolation systems. It is found that the optimal application of SMAs in base-isolation systems can significantly reduce bearings’ residual displacements. In this study, OpenSees program for a three dimensional six-storey steel frame building has been used by locating the isolators under the columns for investigating the feasibility of smart base isolation systems, i.e., the combination of traditional Laminated Rubber Bearing (LRB) with the SMA, in reducing the structure’s isolated-base response to near field earthquake records are examined. Also, a new configuration of SMAs in conjunction with LRB is considered which make the system easier to operate and maintain.


2016 ◽  
Vol 846 ◽  
pp. 114-119
Author(s):  
Arati Pokhrel ◽  
Jian Chun Li ◽  
Yan Cheng Li ◽  
Nicos Maksis ◽  
Yang Yu

Due to the fact that safety is the major concern for civil structures in a seismic active zone, it has always been a challenge for structural engineers to protect structures from earthquake. During past several decades base isolation technique has become more and more popular in the field of seismic protection which can be adopted for new structures as well as the retrofit of existing structures. The objective of this study is to evaluate the behaviours of the building with different seismic isolation systems in terms of roof acceleration, elastic base shear and inter-storey drift under four benchmark earthquakes, namely, El Centro, Northridge, Hachinohe and Kobe earthquakes. Firstly, the design of base isolation systems, i.e. lead rubber bearing (LRB) and friction pendulum bearing (FPB) for five storey RC building was introduced in detail. The non-linear time history analysis was performed in order to determine the structural responses whereas Bouc-Wen Model of hysteresis was adopted for modelling the bilinear behaviour of the bearings. Both isolation systems increase the fundamental period of structures and reduces the spectral acceleration, and hence reduces the lateral force cause by earthquake in the structures, resulting in significant improvement in building performance; however the Lead Rubber Bearing provided the best reduction in elastic base shear and inter-storey drift (at first floor) for most of the benchmark earthquakes. For the adopted bearing characteristics, FPB provided the low isolator displacement.


2020 ◽  
Vol 10 (1) ◽  
pp. 45-54
Author(s):  
Soroush Kherad ◽  
Mahmood Hosseini ◽  
Mehrtash Motamedi

AbstractUsing seesaw structural system equipped with energy dissipating devices has been considered as a low-cost and low-tech way for creation of earthquake-resilient buildings. In this paper by considering three groups of multi-story buildings, including conventional buildings, LRB-based isolated buildings and building with seesaw structure, equipped with a newly introduced type of structural fuses, their seismic performances have been compared through nonlinear time history analyses (NLTHA). The employed fuses in seesaw buildings are a specific type of yielding plate dampers, called Multiple Curved Yielding Plate Energy Dissipater (MCYPED), installed at the bottom of the all circumferential columns of the lowest story of the building. To show the efficiency of the proposed seesaw system in comparison with other two mentioned groups, first, by finite element modeling, verified by experimental results, the initial and secondary stiffness values as well as the yielding and ultimate strengths of the MCYPEDs have been obtained to be modeled by multi-linear plastic springs in the seesaw buildings. Then, a series of NLTHA have been performed on the three groups of buildings by using a set of selected earthquakes. The compared responses include roof displacement and acceleration, base shear, inter-story drift and finally plastic hinges (PHs) formed in the building’s structures. Results show that the proposed seesaw building equipped with MCYPEDs not only results in lower seismic demand, similar to base isolation system, but also leads to remarkable energy dissipation capacity in the building structure at base level, so that the building structure remains basically elastic, and does not need any major repair work, even after large earthquakes, contrary to the conventional building which need to be demolished after the earthquake.


10.29007/pvzx ◽  
2018 ◽  
Author(s):  
Kishan Bhojani ◽  
Vishal Patel ◽  
Snehal Mevada

During the life span of structure there may be an effect of vibration. Due to vibration there may be major or minor damage in building. Base isolation is best method to reduce the seismic response of the structure. This paper gives idea about base isolation system which can be used in multi-story building to reduce seismic response of the structure. This paper represents the initialize study of dynamic parameter like effective damping for four earthquake time history. In this paper the optimum effective damping has been found out under the effect of Loma Prieta earthquake time history. The parametric study has been conducted to evaluate the effect on maximum displacement, maximum acceleration, maximum base shear in bare frame and frame with isolator.


Author(s):  
Fabrizio Paolacci

This paper deals with the effectiveness of two isolation system for the seismic protection of elevated steel storage tanks. In particular the performance of High Damping Rubber Bearings and Friction Pendulum isolators has been analyzed. As case study an emblematic example of elevated tanks collapsed during the Koaceli Earthquake in 1999 at Habas Pharmaceutics plant in Turkey has been considered. A time-history analysis conducted using lumped mass models demonstrated the high demand in terms of base shear required to the support columns and their inevitable collapse due to the insufficient shear strength. A proper design of HDRB and FPS isolator and a complete non-linear analysis of the isolated tanks proved the high effectiveness of both isolation systems in reducing the response of the case tank. Actually, a reduced level of displacements of isolators and a reduced level of convective base shear obtained with the second isolation typology, suggested the used of FPS isolators rather than HDRB.


2021 ◽  
Vol 879 ◽  
pp. 189-201
Author(s):  
M.A. Amir ◽  
N.H. Hamid

Recently, there are a lot of technological developments in the earthquake engineering field to reduce structural damage and one of them is a base isolation system. The base isolation system is one of the best technologies for the safety of human beings and properties under earthquake excitations. The aim of this paper is to review previous research works on simulation of base isolation systems for RC buildings and their efficiency in the safety of these buildings. Base isolation decouples superstructure from substructure to avoid transmission of seismic energy to the superstructure of RC buildings. The most effective way to assess the base isolation system for RC building under different earthquake excitations is by conducting experiment work that consumes more time and money. Many researchers had studied the behavior of base isolation system for structure through modeling the behavior of the base isolation in which base isolator is modeled through numerical models and validated through experimental works. Previous researches on the modeling of base isolation systems of structures had shown similar outcomes as the experimental work. These studies indicate that base isolation is an effective technology in immunization of structures against earthquakes.


2012 ◽  
Vol 234 ◽  
pp. 96-101 ◽  
Author(s):  
Donato Cancellara ◽  
Fabio de Angelis

In the present work we have analyzed a particular base isolation system for the seismic protection of a multi-storey reinforced concrete (RC) building. The viscous dampers and friction sliders are the devices adopted in parallel for realizing the base isolation system. The base isolation structure has been designed and verified according to European seismic code EC8 and by considering for the friction sliders the influence of the sliding velocity on the value of the friction coefficient. A dynamic nonlinear analysis for a three-dimensional base isolated structure has been performed. Recorded accelerograms for bi-directional ground motions have been used which comply with the requirements imposed by EC8 for the representation of a seismic action in a time history analysis. In this paper a comparative analysis is presented between the base isolated structure with the described hybrid base isolation system and the traditional fixed base structure.


Sign in / Sign up

Export Citation Format

Share Document