scholarly journals Effect of tillage and fertilizer doses on growth and growth indices of soybean (Glycine max L.) under conservation tillage systems

2021 ◽  
pp. 181-186
Author(s):  
Shilpa Manhas ◽  
Janardan Singh ◽  
Ankit Saini ◽  
Tarun Sharma ◽  
Parita K.

A field experiment was conducted during kharif season of 2019 at the Research Farm, Department of Agronomy, CSKHPKV, Palampur to study the effect of tillage and fertilizer doses on growth and growth indices of soybean under conservation tillage systems. The experiment consisted of twelve treatment combinations which included three tillage systems minimum tillage, minimum tillage with crop residue and conventional tillage and four fertility levels viz; 25 % recommended dose of fertilizer (RDF) , 50 %(RDF) , 75 % RDF and 100% RDF and which were tested in split plot design with tillage system in main plots and fertility levels in sub plots.The soil texture of experimental site was silty clay loam. Minimum tillage along with crop residues (T2)recorded significantly taller plants and higher dry matter accumulation followed by conventional tillage. Absolute growth rate, crop growth rate, dry matter efficiency, relative growth rate and unit area efficiency were significantly higher with minimum tillage + crop residue treatment. Application of 100 % followed by 75 % recommended dose of fertilizer resulted in significantly higher growth parameters and growth indices.

2011 ◽  
Vol 56 (2) ◽  
pp. 111-119
Author(s):  
Branimir Mikic ◽  
Bojan Stipesevic ◽  
Emilija Raspudic ◽  
Georg Drezner ◽  
Bojana Brozovic

Modern soil tillage systems based on different tools than mouldboard plough have very often stronger weed occurrence, which can be a serious problem for achieving high yields. An obvious solution for weed suppression is a herbicide, whose improper use can deteriorate environment and lead toward serious ecological problems. In order to investigate the interaction between soil tillage and herbicide, trial was set up in Valpovo in seasons 2008/09 - 2010/11. Two soil tillage systems (CT-conventional tillage, based on mouldboard ploughing, and CH-chiselling and disk harrowing, without ploughing) and five herbicide treatments (NH-control, no herbicides; H10- recommended dose of Herbaflex (2 l ha-1); H05-half dose of Herbaflex; F10- recommended dose of Fox (1.5 l ha-1); and F05-half dose of Fox) were applied to winter wheat crops. Results showed similar effects of soil tillage on the winter wheat yield, whereas different herbicide dosages showed similar weed suppression and influence on winter wheat yield.


Weed Science ◽  
1991 ◽  
Vol 39 (2) ◽  
pp. 186-194 ◽  
Author(s):  
John Cardina ◽  
Emilie Regnier ◽  
Kent Harrison

Soils from long-term tillage plots at three locations in Ohio were sampled to determine composition and size of weed seed banks following 25 yr of continuous no-tillage, minimum-tillage, or conventional-tillage corn production. The same herbicide was applied across tillage treatments within each year and an untreated permanent grass sod was sampled for comparison. Seed numbers to a 15-cm depth were highest in the no-tillage treatment in the Crosby silt loam (77 800 m–2) and Wooster silt loam (8400 m–2) soils and in the grass sod (7400 m–2) in a Hoytville silty clay loam soil. Lowest seed numbers were found in conventional-tillage plots in the Wooster soil (400 m–2) and in minimum-tillage plots in the Crosby (2200 m–2) and Hoytville (400 m–2) soils. Concentration of seeds decreased with depth but the effect of tillage on seed depth was not consistent among soil types. Number of weed species was highest in permanent grass sod (10 to 18) and decreased as soil disturbance increased; weed populations were lowest in conventional tillage in the Hoytville soil. Common lambsquarters, pigweeds, and fall panicum were the most commonly found seeds in all soils. Diversity indices indicated that increased soil disturbance resulted in a decrease in species diversity. Weed populations the summer following soil sampling included common lambsquarters, pigweeds, fall panicum, and several species not detected in the seed bank.


2005 ◽  
Vol 53 (1) ◽  
pp. 53-57 ◽  
Author(s):  
T. Rátonyi ◽  
L. Huzsvai ◽  
J. Nagy ◽  
A. Megyes

The cultivation technologies for the dominant crops in Hungary need to be improved both in the interests of environmental protection and to reduce cultivation costs. A long-term research project was initiated in order to determine the feasibility of conservation tillage systems. The aim of the experiments was to evaluate conservation farming systems in Hungary in order to achieve more economical and more environment-friendly agricultural land use. Four tillage systems, namely conventional tillage (mouldboard plough), conservation tillage I (primary tillage with a J.D. Disk Ripper), conservation tillage II (primary tillage with a J.D. Mulch Finisher) and no tillage (direct drilling), were compared on a clay loam meadow soil (Vertisol). The physical condition of the experimental soils was evaluated using a hand-operated static cone penetrometer. Parallel with the measurement of penetration resistance, the moisture content of the soil was also determined. The grain yield of maize hybrids (Kincs SC [1999], Occitán SC [2000], Pr 37M34 SC [2001], DeKalb 471 SC [2002]) was measured using a plot combine-harvester. The analysis of soil conditions confirmed that if the cultivation depth and intensity are reduced the compaction of soil layers close to the surface can be expected. The decrease in yields (8-33%) in direct drilling (NT) and shallow, spring cultivated (MF) treatments, despite the higher available water content, can be explained partly by the compacted status of the 15-25 cm soil layer.


1982 ◽  
Vol 62 (3) ◽  
pp. 631-638 ◽  
Author(s):  
R. P. ZENTNER ◽  
C. W. LINDWALL

The economic feasibility of substituting herbicides for mechanical tillage of summer fallow was assessed under a spring-wheat-fallow rotation at Lethbridge, Alberta. Six minimum tillage and two conventional tillage treatments were evaluated over a 9-yr period for differences in resource requirements and overhead costs. Also, break-even costs for herbicides that equate the cost of fallowing with minimum and conventional tillage systems were estimated at three prices for wheat and three prices for labor. The minimum tillage treatments required an average of 14.2% and 4.1% less resources than for the blade-only and one-way disc-only treatments (i.e., conventional tillage treatments), respectively. The herbicides-only treatment required the least amount of labor, fuel and oil, and machine repairs averaging 15.0, 22.7 and 22.9% less, respectively, than that required for the blade-only treatment. Break-even costs for herbicides were highest for the herbicides/fall blade treatment averaging $54.98, $77.59, and $100.20/ha relative to the blade-only treatment at wheat prices of $147, $220, and $294/t, respectively, and a price for labor of $5/h. The herbicides-only treatment ranked second with break-even costs averaging 16–33% lower than for the herbicides/fall blade treatment under similar price assumptions.


1999 ◽  
Vol 31 (1) ◽  
pp. 133-147 ◽  
Author(s):  
Keith O. Fuglie

AbstractAdoption of conservation tillage can lead to substantial environmental benefits from reduced soil erosion. But benefits may be partially offset if adoption increases reliance on agricultural chemicals. Using area study data from the Cornbelt, this study examines factors affecting adoption of no-till and other conservation tillage systems and their effect on chemical use and corn yield. The results find no evidence that herbicide or fertilizer application rates are higher on fields with conservation tillage systems compared with conventional tillage. However, insecticide use may increase somewhat and yield may be lower. Current demographic trends in U.S. agriculture favor continued diffusion of conservation tillage.


2011 ◽  
Vol 48 (2) ◽  
pp. 159-175 ◽  
Author(s):  
J. KIHARA ◽  
A. BATIONO ◽  
B. WASWA ◽  
J. M. KIMETU ◽  
B. VANLAUWE ◽  
...  

SUMMARYReduced tillage is said to be one of the potential ways to reverse land degradation and ultimately increase the productivity of degrading soils of Africa. We hypothesised that crop yield following a modest application of 2 t ha−1 of crop residue in a reduced tillage system is similar to the yield obtained from a conventional tillage system, and that incorporation of legumes in a cropping system leads to greater economic benefits as opposed to a cropping system involving continuous maize. Three cropping systems (continuous maize monocropping, legume/maize intercropping and rotation) under different tillage and residue management systems were tested in sub-humid western Kenya over 10 seasons. While soybean performed equally well in both tillage systems throughout, maize yield was lower in reduced than conventional tillage during the first five seasons but no significant differences were observed after season 6. Likewise, with crop residue application, yields in conventional and reduced tillage systems are comparable after season 6. Nitrogen and phosphorus increased yield by up to 100% compared with control. Gross margins were not significantly different among the cropping systems being only 6 to 39% more in the legume–cereal systems relative to similar treatments in continuous cereal monocropping system. After 10 seasons of reduced tillage production, the economic benefits for our cropping systems are still not attractive for a switch from the conventional to reduced tillage.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 471B-471
Author(s):  
D.J. Makus

In Spring 1998, two sweet corn (Zea mays var. rugosa) cultivars were grown under three tillage systems, conventional cultivation, ridge tillage (RT), and no tillage (NT), which had been in continuous management since Fall 1994. Nitrogen (as NH4NO3), the only fertilizer used, was applied twice at 60 kg/ha. Sweet corn yields were not influenced by tillage system, but average ear weights tended to be smaller under NT (P < 0.17). Ear quality attributes, which included ear weight, length, diameter, dry matter, and incidence of earworm damage, were greater in the later-maturing `G-90' cultivar than in `Sensor'; but tillage system had no influence on these attributes. Cultivars supported different weed species underneath their canopies. `Sensor' allowed more light penetration and sustained higher weed biomass than did the taller `G-90' plants. Weed biomass was higher under RT and NT. Seasonal soil moisture was lowest in the RT plots, but only in the 0- to 15-cm profile. Soil temperatures (unreplicated) at the 15-cm depth were similar between cultivars and tillage treatments over the growing season. The earlier-maturing `Sensor' generally accumulated more ear mineral nutrients (P, S, NO3, Ca, Na, Zn, Mn, Al, and B; dry weight basis), but had lower dry matter (percentage) than did `G-90'. Cumulative nutrient levels tended to be lowest in NT-grown ears (P < 0.08). Soil sampled at 0- to 5-, 10- to 15-, and 25- to 30-cm depths generally had higher concentrations of nutrients toward the surface, and NT soils had the steepest nutrient gradients, with the exception of Na and NO3. Total soil salts were reduced by RT and NT, but C: N ratio remained unchanged between tillage systems.


2020 ◽  
Vol 22 (2) ◽  
pp. 55-66
Author(s):  
MI Hossain ◽  
MI Hossain ◽  
MA Ohab ◽  
MHR Sheikh ◽  
BL Nag

A three yearsfield experiment was conducted at Regional Wheat Research Centre, Shyampur, Rajshahiduring 2014-15 to 2017-18 with an objective to observe the effects on soil fertility and performance of the crops under different tillage and residue management for rice-wheat (RW) systems by adding a third pre-rice crop of maize. The experiment was conducted in split plot design with three replication. The tillage options viz. (i) Strip tillage (ST) (ii) Permanent bed (PB) and (iii) conventional (CT) tillage; two crop residue management, viz. (i) 0%=no residue and (ii) 30% residue retention were studied. The results indicated that keeping 30% crop residue in the field with minimum disturbance of soil had significant contribution on grain yield of wheat-maize-rice sequence compare to conventional practice of well-till without crop residue retention.The permanent bed planting system gave the highest yields of wheat (4.37 tha-1), maize (7.31 tha-1) and rice (4.40 tha-1) and followed by strip tillage and lowest in conventional tillage. Among the residue management, 30% residue retention showed the highest yields of wheat (4.46tha- 1), maize (7.39 tha-1) and rice (4.69 tha-1). Considering economic performance of all tillage systems, the permanent bed planting system performed the best among all other tillage options and followed by strip tillage. Contrarily, 30% residue retention gave the highest yield and increased 0.12-0.14% organic matter into the soil with more productive.The results indicates that, both tillage systems coupled with 30% residue retention might be a good option for higher yield as well as soil fertility for Wheat-Maize- Taman rice cropping pattern in drought prone areas of Bangladesh. Bangladesh Agron. J. 2019, 22(2): 55-66


2011 ◽  
Vol 48 (No. 6) ◽  
pp. 249-254 ◽  
Author(s):  
S. Husnjak ◽  
D. Filipović ◽  
S. Košutić

An experiment with five different tillage systems and their influence on physical properties of a&nbsp;silty loam soil (Albic Luvisol) was carried in northwest Slavonia in the period of 1997&ndash;2000. The compared tillage systems were: 1. conventional tillage (CT), 2. reduced tillage (RT), 3. conservation tillage I&nbsp;(CP), 4. conservation tillage II (CM), 5. no-tillage system (NT). The crop rotation was soybean (Glycine max L.) &ndash; winter wheat (Triticum aestivum L.) &ndash; soybean &ndash; winter wheat. Differences between tillage systems in bulk density, total porosity, and water holding capacity and air capacity were not significant in winter wheat seasons. In soybean seasons, significant differences between some tillage systems were recorded in bulk density, total porosity, air capacity and soil moisture. The deterioration trend of physical properties was generally increasing in the order CM, CT, CP, NT and RT. The highest yield of soybean in the first experimental year was achieved under CT system and the lowest under CP system. In all other experimental years, the highest yield of winter wheat and soybean was achieved under CM system, while the lowest under RT system.


2012 ◽  
Vol 39 (2) ◽  
pp. 105-112 ◽  
Author(s):  
W. H. Faircloth ◽  
D. L. Rowland ◽  
M. C. Lamb ◽  
K. S. Balkcom

Abstract A five-year study to investigate the potential interaction of conservation tillage with reduced irrigation amounts was conducted near Dawson, GA on peanut (Arachis hypogaea L.). Conventional tillage was compared to two conservation tillage programs (wide-strip and narrow-strip tillage) under four irrigation levels (100, 66, 33, and 0% of a recommended amount). Peanut yield did not exhibit a tillage by irrigation interaction as expected, although the main effects of irrigation and tillage were each significant by year due to weather variations. Peanut yield in narrow-strip tillage or wide-strip tillage were individually superior to conventional tillage in three seasons out of five, however only in one year did both conservation tillage systems outperform the conventional system. No detrimental effects on yields could be attributed to conservation tillage. Peanut quality and digging loss were dependent on the tillage by year effect as well as the main effect of irrigation. Irrigation increased total sound mature kernels (TSMK) 2% versus non-irrigated (0% irrigation level); tillage was not significant each year of the study but increased TSMK 2% in three of five years. Digging losses were greater in plots with increased yield potential such as those receiving irrigation. Net economic returns revealed a moderate trend towards sustained profitability under reduced irrigation levels through narrow-strip tillage and to a lesser extent, wide-strip tillage. Under conventional tillage systems, returns decreased with decreasing amounts of irrigation applied.


Sign in / Sign up

Export Citation Format

Share Document