Interaction of Tillage System and Irrigation Amount on Peanut Performance in the Southeastern U.S

2012 ◽  
Vol 39 (2) ◽  
pp. 105-112 ◽  
Author(s):  
W. H. Faircloth ◽  
D. L. Rowland ◽  
M. C. Lamb ◽  
K. S. Balkcom

Abstract A five-year study to investigate the potential interaction of conservation tillage with reduced irrigation amounts was conducted near Dawson, GA on peanut (Arachis hypogaea L.). Conventional tillage was compared to two conservation tillage programs (wide-strip and narrow-strip tillage) under four irrigation levels (100, 66, 33, and 0% of a recommended amount). Peanut yield did not exhibit a tillage by irrigation interaction as expected, although the main effects of irrigation and tillage were each significant by year due to weather variations. Peanut yield in narrow-strip tillage or wide-strip tillage were individually superior to conventional tillage in three seasons out of five, however only in one year did both conservation tillage systems outperform the conventional system. No detrimental effects on yields could be attributed to conservation tillage. Peanut quality and digging loss were dependent on the tillage by year effect as well as the main effect of irrigation. Irrigation increased total sound mature kernels (TSMK) 2% versus non-irrigated (0% irrigation level); tillage was not significant each year of the study but increased TSMK 2% in three of five years. Digging losses were greater in plots with increased yield potential such as those receiving irrigation. Net economic returns revealed a moderate trend towards sustained profitability under reduced irrigation levels through narrow-strip tillage and to a lesser extent, wide-strip tillage. Under conventional tillage systems, returns decreased with decreasing amounts of irrigation applied.

1993 ◽  
Vol 3 (2) ◽  
pp. 211-214 ◽  
Author(s):  
Ronald D. Morse

Conservation tillage systems offer distinct advantages for crop production under erosive and droughty soil conditions. This report contains 4 years of data on the effects of in situ cereal rye and wheat mulches on yield of cabbage (Brassica oleracea L. var. capitata) grown under limited-irrigation, conservation-tillage systems. Three tillage systems were studied: conventional plow-disk (CT); strip tillage (ST) and no-tillage (NT). The summers of 1987 and 1990 were characterized by below-average total rain and periods of prolonged (45 days) of dry weather during head enlargement; cabbage yields were highest in the mulched ST and NT plots. In contrast, the 1988 and 1989 growing seasons were above average in total rain and there were no prolonged periods of dry weather. Cabbage yields were unaffected by tillage treatments in 1988, while, in 1989, yields with NT were 65% and 60% lower than with CT and ST, respectively. A combination of abundant rain, soil compaction, and delayed planting retarded plant growth in the 1989 NT plots, resulting in smaller, less-productive plants than in the tilled ST and CT plots. These data show that: 1) conservation tillage and particularly strip tillage systems are viable options for production of cabbage; and 2) rain-irrigation patterns, site selection, and planting dates are major determinants of the relative advantages of conservation tillage compared to conventional tillage systems.


2001 ◽  
Vol 28 (2) ◽  
pp. 64-73 ◽  
Author(s):  
J. W. Chapin ◽  
J. S. Thomas ◽  
P. H. Joost

Abstract A 2-yr study was conducted on the effects of tillage and soil insecticide (chlorpyrifos) treatment on peanut arthropod pests. A 3 by 2 split-plot experiment with five replications was subjected to factorial ANOVA. Main plot treatments consisted of three tillage systems: conventional moldboard plow, strip tillage into a killed wheat cover crop, and strip tillage into corn stubble residue. Subplot insecticide treatments were granular chlorpyrifos applied at early pegging (growth stage R2) and untreated. Populations of corn earworn, Helicoverpa zea (Boddie), and velevetbean caterpillar, Anticarsia gemmatalis Hübner, were lower in strip tillage systems. Chlorpyrifos applications caused corn earworm outbreaks in all tillage systems, but these applications were more disruptive in strip tillage. Chlorpyrifos treatment also increased populations of fall armyworm, Spodoptera frugiperda (J.E. Smith), but had no measurable effect on velvetbean caterpillar populations. Pod damage from lesser cornstalk borer, Elasmopalpus lignosellus (Zeller), and wire-worms, Conoderus spp., was lower in strip tillage systems, and chlorpyrifos suppressed pod damage in all systems. Threecornered alfalfa hopper, Spissistilus festinus (Say), damage to peanut was greater in the wheat residue strip tillage system. Chlorpyrifos treatment reduced threecornered alfalfa hopper damage in all systems. Spider mite injury was not affected by tillage, but chlorpyrifos treatments resulted in mite outbreaks in all tillage systems. Burrower bug, Pangaeus bilineatus Say, injury to peanut kernels was greater in the strip tillage systems in 1999; and burrower bug injury was suppressed in the strip tillage systems by chlorpyrifos treatment. There was a significant interaction effect for burrower bug injury between tillage and insecticide treatment. Incidence of tomato spotted wilt virus also was reduced by strip tillage. Use of an effective fungicide program and a 3-yr crop rotation out of peanut production probably obscured any potential tillage effects on fungal diseases (southern stem rot, Rhizoctonia limb rot, and leaf spot). However, chlorpyrifos treatment increased Rhizoctonia limb rot incidence. Weed populations were generally greater in strip tillage systems, but postemergence herbicides effectively eliminated any potential confounding effect on yield and grade. Yield was not affected by tillage in either year, and chlorpyrifos had no effect on yield in 1998. In 1999, however, chlorpyrifos increased yield in both strip tillage systems. Neither tillage nor insecticide treatment affected grade (percentage total mature kernels) in 1998, but in 1999 grade was highest in conventional tillage and grade was improved by chlorpyrifos treatment in strip tillage systems. Crop value losses of $249 and $388/ha were attributed to burrower bug injury in untreated corn and wheat residue strip tillage systems, respectively. This injury may have been an anomaly of drought conditions but, given the potential economic impact, burrower bug merits further study in conservation tillage peanut production.


2005 ◽  
Vol 53 (1) ◽  
pp. 53-57 ◽  
Author(s):  
T. Rátonyi ◽  
L. Huzsvai ◽  
J. Nagy ◽  
A. Megyes

The cultivation technologies for the dominant crops in Hungary need to be improved both in the interests of environmental protection and to reduce cultivation costs. A long-term research project was initiated in order to determine the feasibility of conservation tillage systems. The aim of the experiments was to evaluate conservation farming systems in Hungary in order to achieve more economical and more environment-friendly agricultural land use. Four tillage systems, namely conventional tillage (mouldboard plough), conservation tillage I (primary tillage with a J.D. Disk Ripper), conservation tillage II (primary tillage with a J.D. Mulch Finisher) and no tillage (direct drilling), were compared on a clay loam meadow soil (Vertisol). The physical condition of the experimental soils was evaluated using a hand-operated static cone penetrometer. Parallel with the measurement of penetration resistance, the moisture content of the soil was also determined. The grain yield of maize hybrids (Kincs SC [1999], Occitán SC [2000], Pr 37M34 SC [2001], DeKalb 471 SC [2002]) was measured using a plot combine-harvester. The analysis of soil conditions confirmed that if the cultivation depth and intensity are reduced the compaction of soil layers close to the surface can be expected. The decrease in yields (8-33%) in direct drilling (NT) and shallow, spring cultivated (MF) treatments, despite the higher available water content, can be explained partly by the compacted status of the 15-25 cm soil layer.


1999 ◽  
Vol 31 (1) ◽  
pp. 133-147 ◽  
Author(s):  
Keith O. Fuglie

AbstractAdoption of conservation tillage can lead to substantial environmental benefits from reduced soil erosion. But benefits may be partially offset if adoption increases reliance on agricultural chemicals. Using area study data from the Cornbelt, this study examines factors affecting adoption of no-till and other conservation tillage systems and their effect on chemical use and corn yield. The results find no evidence that herbicide or fertilizer application rates are higher on fields with conservation tillage systems compared with conventional tillage. However, insecticide use may increase somewhat and yield may be lower. Current demographic trends in U.S. agriculture favor continued diffusion of conservation tillage.


2014 ◽  
Vol 662 ◽  
pp. 153-159
Author(s):  
Shu Hua Ji ◽  
Jiang Yang Deng

The characteristics of nitrate nitrogen leaching in soil under different irrigation levels were studied by soil column simulation experiment with numerical simulation done using LEACHM model taking nitrate nitrogen leaching under different irrigation levels as the research background. In sandy soils, an irrigation amount of 300 mm would cause nitrate nitrogen to leach downward 75~150 cm, with a leaching amount of 10~30.7 kg/ha; and an irrigation amount of 700 mm would make nitrate nitrogen leach downward about 3.5 m, with a leaching amount of 98 kg/ha. Research data showed that the amount of nitrate nitrogen leaching was positively correlated with the irrigation intensity level, irrigation level directly determined the amount of nitrate nitrogen leaching, and influenced its leaching depth.


2001 ◽  
Vol 81 (1) ◽  
pp. 17-27 ◽  
Author(s):  
C. A. Grant ◽  
K. R. Brown ◽  
G. J. Racz ◽  
L. D. Bailey

Effective fertilizer management is critical to maintain economic production and protect long-term environmental quality. Field studies were conducted over 4 yr at two locations in southwestern Manitoba to determine the effect of source, timing and placement of N on grain yield and N recovery of durum wheat (Triticum durum L. ‘Sceptre’) under reduced-tillage (RT) and conventional-tillage (CT) management. The effect of N management on durum grain yield and N recovery differed with soil type and tillage system. On the clay loam (CL) soil, lower yields with fall- as compared with spring-banded N were more frequent under RT than CT. Lower yields occurred more frequently with fall-applied as compared with spring-applied urea ammonium nitrate (UAN) than when urea or NH3 was the N source. On the drier fine sandy loam (FSL) soil, fall applications of N generally produced similar to higher grain yield than did spring applications. Differences among fertilizer sources and tillage systems were much less frequent with spring than fall applications of N. Where differences occurred, durum grain yields were higher with in-soil than surface applications of urea or UAN. In-soil applications of urea and UAN increased durum grain yield as compared with surface applications more frequently under RT than CT on the CL soil where yield potential was high, whereas increases on the FSL were as common under CT as under RT. On soils with a high yield potential, enhanced immobilisation and/or volatilisation of surface-applied N may reduce grain yield by reducing available N, particularly under RT. Selection of a suitable source-timing and placement combination to optimise crop yield may be more important under RT than CT. Key words: Conservation tillage, direct seeding, placement


2021 ◽  
pp. 181-186
Author(s):  
Shilpa Manhas ◽  
Janardan Singh ◽  
Ankit Saini ◽  
Tarun Sharma ◽  
Parita K.

A field experiment was conducted during kharif season of 2019 at the Research Farm, Department of Agronomy, CSKHPKV, Palampur to study the effect of tillage and fertilizer doses on growth and growth indices of soybean under conservation tillage systems. The experiment consisted of twelve treatment combinations which included three tillage systems minimum tillage, minimum tillage with crop residue and conventional tillage and four fertility levels viz; 25 % recommended dose of fertilizer (RDF) , 50 %(RDF) , 75 % RDF and 100% RDF and which were tested in split plot design with tillage system in main plots and fertility levels in sub plots.The soil texture of experimental site was silty clay loam. Minimum tillage along with crop residues (T2)recorded significantly taller plants and higher dry matter accumulation followed by conventional tillage. Absolute growth rate, crop growth rate, dry matter efficiency, relative growth rate and unit area efficiency were significantly higher with minimum tillage + crop residue treatment. Application of 100 % followed by 75 % recommended dose of fertilizer resulted in significantly higher growth parameters and growth indices.


2020 ◽  
Vol 22 (2) ◽  
pp. 55-66
Author(s):  
MI Hossain ◽  
MI Hossain ◽  
MA Ohab ◽  
MHR Sheikh ◽  
BL Nag

A three yearsfield experiment was conducted at Regional Wheat Research Centre, Shyampur, Rajshahiduring 2014-15 to 2017-18 with an objective to observe the effects on soil fertility and performance of the crops under different tillage and residue management for rice-wheat (RW) systems by adding a third pre-rice crop of maize. The experiment was conducted in split plot design with three replication. The tillage options viz. (i) Strip tillage (ST) (ii) Permanent bed (PB) and (iii) conventional (CT) tillage; two crop residue management, viz. (i) 0%=no residue and (ii) 30% residue retention were studied. The results indicated that keeping 30% crop residue in the field with minimum disturbance of soil had significant contribution on grain yield of wheat-maize-rice sequence compare to conventional practice of well-till without crop residue retention.The permanent bed planting system gave the highest yields of wheat (4.37 tha-1), maize (7.31 tha-1) and rice (4.40 tha-1) and followed by strip tillage and lowest in conventional tillage. Among the residue management, 30% residue retention showed the highest yields of wheat (4.46tha- 1), maize (7.39 tha-1) and rice (4.69 tha-1). Considering economic performance of all tillage systems, the permanent bed planting system performed the best among all other tillage options and followed by strip tillage. Contrarily, 30% residue retention gave the highest yield and increased 0.12-0.14% organic matter into the soil with more productive.The results indicates that, both tillage systems coupled with 30% residue retention might be a good option for higher yield as well as soil fertility for Wheat-Maize- Taman rice cropping pattern in drought prone areas of Bangladesh. Bangladesh Agron. J. 2019, 22(2): 55-66


2011 ◽  
Vol 48 (No. 6) ◽  
pp. 249-254 ◽  
Author(s):  
S. Husnjak ◽  
D. Filipović ◽  
S. Košutić

An experiment with five different tillage systems and their influence on physical properties of a silty loam soil (Albic Luvisol) was carried in northwest Slavonia in the period of 1997–2000. The compared tillage systems were: 1. conventional tillage (CT), 2. reduced tillage (RT), 3. conservation tillage I (CP), 4. conservation tillage II (CM), 5. no-tillage system (NT). The crop rotation was soybean (Glycine max L.) – winter wheat (Triticum aestivum L.) – soybean – winter wheat. Differences between tillage systems in bulk density, total porosity, and water holding capacity and air capacity were not significant in winter wheat seasons. In soybean seasons, significant differences between some tillage systems were recorded in bulk density, total porosity, air capacity and soil moisture. The deterioration trend of physical properties was generally increasing in the order CM, CT, CP, NT and RT. The highest yield of soybean in the first experimental year was achieved under CT system and the lowest under CP system. In all other experimental years, the highest yield of winter wheat and soybean was achieved under CM system, while the lowest under RT system.


2011 ◽  
Vol 33 (2) ◽  
pp. 637-648 ◽  
Author(s):  
Elcio Liborio Balota ◽  
Pedro Antonio Martins Auler

The objective of this work was to evaluate the alterations in carbon and nitrogen mineralization due to different soil tillage systems and groundcover species for intercropped orange trees. The experiment was established in an Ultisol soil (Typic Paleudults) originated from Caiuá sandstone in northwestern of the state of Paraná, Brazil, in an area previously cultivated with pasture (Brachiaria humidicola). Two soil tillage systems were evaluated: conventional tillage (CT) in the entire area and strip tillage (ST) with a 2-m width, each with different groundcover vegetation management systems. The citrus cultivar utilized was the 'Pera' orange (Citrus sinensis) grafted onto a 'Rangpur' lime rootstock. The soil samples were collected at a 0-15-cm depth after five years of experiment development. Samples were collected from under the tree canopy and from the inter-row space after the following treatments: (1) CT and annual cover crop with the leguminous Calopogonium mucunoides; (2) CT and perennial cover crop with the leguminous peanut Arachis pintoi; (3) CT and evergreen cover crop with Bahiagrass Paspalum notatum; (4) CT and cover crop with spontaneous B. humidicola grass vegetation; and (5) ST and maintenance of the remaining grass (pasture) of B. humidicola. The soil tillage systems and different groundcover vegetation influenced the C and N mineralization, both under the tree canopy and in the inter-row space. The cultivation of B. humidicola under strip tillage provided higher potential mineralization than the other treatments in the inter-row space. Strip tillage increased the C and N mineralization compared to conventional tillage. The grass cultivation increased the C and N mineralization when compared to the others treatments cultivated in the inter-row space.


Sign in / Sign up

Export Citation Format

Share Document