Peristaltic Flow of a Jeffery Fluid with Heat Transfer in an Inclined Porous Tube under the Influence of Slip and Variable Viscosity

2019 ◽  
Vol 393 ◽  
pp. 16-30 ◽  
Author(s):  
Gudekote Manjunatha ◽  
Hanumesh Vaidya ◽  
Choudhari Rajashekhar ◽  
K.V. Prasad

The present paper investigates the role of heat transfer on peristaltic transport of Jeffery liquid in a porous tube. The effect of variable viscosity and slip impacts are taken into account. The closed-form solutions are obtained with the help of long wavelength and small Reynolds number. The results of physiological parameters on velocity, pressure rise, frictional force, trapped bolus, and temperature are plotted graphically. It is seen that the pressure rise and the frictional forces decline with an expansion in the viscosity parameter. The study further demonstrates that an increase in the value of the slip parameter significantly alters the pressure rise, frictional force, and temperature. Moreover, the volume of trapped bolus increases with an increase in the value of the velocity slip parameter.

Author(s):  
G. Manjunatha ◽  
C. Rajashekhar ◽  
K. V. Prasad ◽  
Hanumesh Vaidya ◽  
Saraswati

The present article addresses the peristaltic flow of a Jeffery fluid over an inclined axisymmetric porous tube with varying viscosity and thermal conductivity. Velocity slip and convective boundary conditions are considered. Resulting governing equations are solved using long wavelength and small Reynolds number approximations. The closed-form solutions are obtained for velocity, streamline, pressure gradient, temperature, pressure rise, and frictional force. The MATLAB numerical simulations are utilized to compute pressure rise and frictional force. The impacts of various physical parameters in the interims for time-averaged flow rate with pressure rise and is examined. The consequences of sinusoidal, multi-sinusoidal, triangular, trapezoidal, and square waveforms on physiological parameters are analyzed and discussed through graphs. The analysis reveals that the presence of variable viscosity helps in controlling the pumping performance of the fluid.


2019 ◽  
Vol 392 ◽  
pp. 158-177 ◽  
Author(s):  
Hanumesh Vaidya ◽  
Choudhari Rajashekhar ◽  
Gudekote Manjunatha ◽  
K.V. Prasad

The present study investigates the effects of slip and heat transfer on peristaltic mechanism of Bingham fluid in an inclined tube. The sinusoidal, multi-sinusoidal, triangular, square and trapezoidal wave forms are considered. The analysis has been carried out under the assumptions of long wavelength and small Reynold's number approximations. The closed-form solutions are obtained for velocity, plug flow velocity, pressure gradient, streamlines, and temperature. The numerical integration is employed to investigate the effects of pressure rise and frictional force. The influence of relevant parameters on physiological quantities of interest is analyzed and discussed through graphs. The study reveals that velocity and thermal slip have a decreasing effect on velocity and temperature. Further, it is noticed that the volume of trapped bolus increases for increasing values of velocity slip parameter.


2019 ◽  
Vol 24 (2) ◽  
pp. 309-328 ◽  
Author(s):  
G. Manjunatha ◽  
C. Rajashekhar ◽  
H. Vaidya ◽  
K.V. Prasad

Abstract The present study investigates the combined effects of varying viscosity and heat transfer on a Casson fluid through an inclined porous axisymmetric tube in the presence of slip effects. The modeled governing equations are solved analytically by considering the long wavelength and small Reynolds number approximations. The numerical integration is employed to obtain pressure rise and frictional force. A parametric analysis has been presented to study the effects of the Darcy number, angle of inclination, varying viscosity, velocity slip, thermal slip, yield stress, amplitude ratio, Prandtl number and Eckert number on the pressure rise, pressure gradient, streamlines, frictional force and temperature. The study reveals that an increase in the angle of inclination and viscosity parameter has a proportional increase in the pressure rise. Also, an increase in the porosity causes a significant reduction in the pressure rise.


2012 ◽  
Vol 12 (03) ◽  
pp. 1250035 ◽  
Author(s):  
NOREEN SHER AKBAR ◽  
S. NADEEM ◽  
T. HAYAT ◽  
A. ALSAEDI

In this article, we considered the peristaltic flow of Newtonian incompressible fluid of chyme in small intestine. The analysis has been performed using an endoscope. The peristaltic flow of chyme is modeled by assuming that the peristaltic wave is formed in non-periodic mode comprising two sinusoidal waves of different wave lengths propagating with same speed along the outer wall of the tube. Heat transfer mechanisms have been taken into account, such that the constant temperature [Formula: see text] and [Formula: see text] are assigned to inner and outer tubes, respectively. A complex system of equations has been simplified using long wavelength and low Reynolds number approximation because such assumptions exist in small intestine. Exact solutions have been carried out for velocity temperature and pressure gradient. Graphical results have been discussed for pressure rise, frictional forces, temperature, and velocity profile. Comparison of present results with the results of the existing literature have been presented through figures. Trapping phenomena have been presented at the conclusion of the article.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Y. Abd elmaboud ◽  
Kh. S. Mekheimer ◽  
A. I. Abdellateef

The heat transfer characteristics of a couple-stress fluid (CSF) in a two-dimensional asymmetric channel is analyzed. The channel asymmetry is produced by choosing the peristaltic wave train on the walls to have different amplitudes and phase. Mathematical modeling corresponding to the two-dimensional couple stress fluid is made. Analytical expressions for the axial velocity, stream function, heat transfer, and the axial pressure gradient are established using long wavelength assumption. Numerical computations have been carried out for the pressure rise per wavelength. The influence of various parameters of interest is seen through graphs on frictional forces, pumping and trapping phenomena, and temperature profile.


Author(s):  
U. P. Singh ◽  
Amit Medhavi ◽  
R. S. Gupta ◽  
Siddharth Shankar Bhatt

The present investigation is concerned with the problem of heat transfer and peristaltic flow of non-Newtonian fluid using Rabinowitsch fluid model through a channel under long wavelength and low Reynolds number approximation. Expressions for velocity, pressure gradient, pressure rise, friction force and temperature have been obtained. The effect of different parameters on velocity, pressure gradient, pressure rise, streamlines, friction force and temperature have been discussed through graphs.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 49 ◽  
Author(s):  
J. Prakash ◽  
E. P.Siva ◽  
A. Govindarajan ◽  
M. Vidhya

The peristaltic flow of a viscoelastic fluid in the tapered microchannel with variable viscosity is investigated. This study is reinvigorated by discovering fluid dynamic in peristaltic motion as signified by biological flows, pharmacodynamics and gastro-intestinal motility enhancement. The microchannel non-uniform and asymmetry is developed by choosing a peristaltic wave train on the wall with different amplitudes and phases. The flow analysis has been arisen for low Reynolds number and long wavelength case. The solutions for stream function, axial velocity and pressure gradient are obtained. The effects of pertinent parameters on the average pressure rise per wavelength are investigated by means of numerical integration. The axial velocity and phenomena of trapping are further discussed.  


2019 ◽  
Vol 16 (2) ◽  
pp. 340-358 ◽  
Author(s):  
Manjunatha Gudekote ◽  
Rajashekhar Choudhari ◽  
Hanumesh Vaidya ◽  
Prasad K.V. ◽  
Viharika J.U.

Purpose The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects of different waveforms on the peristaltic mechanism are taken into account. Design/methodology/approach The governing equations are rendered dimensionless using the suitable similarity transformations. The analytical solutions are obtained by using the long wavelength and small Reynold’s number approximations. The expressions for velocity, flow rate, temperature and streamlines are obtained and analyzed graphically. Furthermore, an application to flow through an artery is determined by using a tensile expression given by Rubinow and Keller. Findings The principal findings from the present model are as follows. The axial velocity increases with an expansion in the estimation of velocity slip parameter and fluid behavior index, and it diminishes for a larger value of the porous parameter. The magnitude of temperature diminishes with an expansion in the Biot number. The flux is maximum for trapezoidal wave and minimum for the triangular wave when compared with other considered waveforms. The flow rate in an elastic tube increases with an expansion in the porous parameter, and it diminishes with an increment in the slip parameter. The volume of tapered bolus enhances with increasing values of the porous parameter. Originality/value The current study finds the application in designing the heart-lung machine and dialysis machine. The investigation further gives a superior comprehension of the peristaltic system associated with the gastrointestinal tract and the stream of blood in small or microvessels.


2019 ◽  
Vol 8 (1) ◽  
pp. 619-629 ◽  
Author(s):  
K. Ramesh ◽  
M. Devakar

Abstract In this investigation, we have studied the problem of peristaltic flow with heat transfer through the gap between coaxial inclined tubes where the inner tube is rigid and the outer tube has sinusoidal wave travelling down its wall. The problem has been formulated in cylindrical coordinate system. The equations governing the flow have been simplified under the long wavelength and low Reynolds number assumptions. The exact solution is obtained for the temperature profile. The perturbation solutions for the velocity and pressure gradient are obtained for small couple stress parameter. Pressure difference per wavelength and frictional forces on the tube walls have been computed numerically. Results are demonstrated for various flow parameters. The better pumping results occur in vertical tube, while less pumping is seen in horizontal tube. The size of trapped bolus is small in triangular wave as compared to other waves. The present study has a wide range of applications in bio-medical engineering like the transport phenomenon in peristaltic micro pumps.


Sign in / Sign up

Export Citation Format

Share Document