scholarly journals Surface water quality in the Mastnik stream catchment area: The situation in the Czech countryside

Geografie ◽  
2018 ◽  
Vol 123 (4) ◽  
pp. 479-505
Author(s):  
Luboš Mrkva ◽  
Bohumír Janský

Despite major investments into the remediation of wastewater, and the reduction of fertilizers, the quality of small river surface water in agricultural and rural regions of Czechia is still very low. The Mastník stream flows through an agricultural area before combining with the Vltava river; a portion of the Mastník stream water inevitably terminates in the Slapy Reservoir. The quality of the water has been analyzed using data from indicator concentrations from both the Vltava River Basin Authority study profiles, and the author’s monitoring profile. The data show that the steps that have been taken – primarily the construction of wastewater treatment plants – have led to a gradual improvement in the surface water quality by some parameters. Presently, a growing concentration of chlorophyll–α and a lack of dissolved oxygen are influencing the final quality of the water. In the case of the Mastník stream, it is particularly necessary to improve the remediation of wastewater from small households, and to reduce the impact of water erosion on agricultural soil.

2014 ◽  
Vol 05 (01) ◽  
pp. 60-64 ◽  
Author(s):  
Anthony C. Okoye ◽  
Emma E. Ezenwaji ◽  
Kabir A. Awopeju

Author(s):  
Josiani Cordova de Oliveira ◽  
Kelly Prado Maia ◽  
Nara Linhares Borges de Castro ◽  
Sílvia Maria Alves Corrêa Oliveira

Water quality issues are a growing concern due to the the recent intensification of urbanization and industrialization. This paper evaluates and compares the surface water quality of the ten sub-basins of the Pará River, located in the São Francisco River Basin, Minas Gerais, and evaluates the impact of seasonality and the compliance with the current limits of state legislation. The surface water quality monitoring database of the Institute of Water Management of Minas Gerais (Igam) was used, and 18 parameters were analyzed from a historical series from 2008 to 2016, totaling 16,651 observations. First, the descriptive statistics of the parameters were calculated, considering each sub-basin separately. Then, for the temporal and spatial analysis, the Kruskal-Wallis nonparametric statistical tests were applied, followed by the multiple comparison test, with an alpha level of 5%, due to the asymmetric behavior of the data. Thus, it was possible to compare water quality of the sub-basins in rainy and dry seasons and to identify which parameters were responsible for the greater degradation. In the compliance analysis to the current limits of state legislation, it was identified that all of the sub-basins were out of the specified range for at least one of the evaluated parameters. Finally, the seasonality analysis exposed significant differences in the parameters of dissolved oxygen, turbidity, total suspended solids, total solids and water temperature, where it was shown that there was a worsening of water quality in the rainy season for most sub-basins.


2010 ◽  
Vol 61 (12) ◽  
pp. 3216-3220 ◽  
Author(s):  
G. Kim ◽  
H. Lee ◽  
Y. Lim ◽  
M. Jung ◽  
D. Kong

It is a well-known fact that baseflow discharge of rainfall runoff significantly impacts the quality of surface water. In this paper, the impact of nitrates discharged as baseflow on stream water quality were studied using PULSE, a hydrograph separation software developed by USGS, to calculate the monthly baseflow discharge. We took water quality and flow rate data from a monitoring station site (code: Ghapcehon2) in Daejeon city and acquired 2005 groundwater quality data in the watershed from government agencies. Agricultural and forestry land use are dominant in the area. The baseflow contributes 85%–95% of stream flows during the spring and fall, 25%–38% during the summer and winter. The monthly nitrate loading discharged as baseflow for Ghapcheon2 was estimated by using monitored nitrate concentrations of groundwater in the watershed. Nitrate loading induced by baseflow at Ghapcheon2 was estimated as 5.4 tons of NO3−-N/km2, which is about 60% of nitrate loading of surface water, or 9.2 tons of NO3−-N/km2. This study shows that groundwater quality monitoring is important for proper management of surface water quality.


2013 ◽  
Vol 10 (11) ◽  
pp. 14463-14493
Author(s):  
B. B. Huang ◽  
D. H. Yan ◽  
H. Wang ◽  
B. F. Cheng ◽  
X. H. Cui

Abstract. Under the background of climate change and human's activities, there has been presenting an increase both in the frequency of droughts and the range of their impacts. Droughts may give rise to a series of resources, environmental and ecological effects, i.e. water shortage, water quality deterioration as well as the decrease in the diversity of aquatic organisms. This paper, above all, identifies the impact mechanism of drought on the surface water quality of the basin, and then systematically studies the laws of generation, transfer, transformation and degradation of pollutants during the drought, finding out that the alternating droughts and floods stage is the critical period during which the surface water quality is affected. Secondly, through employing indoor orthogonality experiments, serving drought degree, rainfall intensity and rainfall duration as the main elements and designing various scenario models, the study inspects the effects of various factors on the nitrogen loss in soil as well as the loss of non-point sources pollution and the leaching rate of nitrogen under the different alternating scenarios of drought and flood. It comes to the conclusion that the various factors and the loss of non-point source pollution are positively correlated, and under the alternating scenarios of drought and flood, there is an exacerbation in the loss of ammonium nitrogen and nitrate nitrogen in soil, which generates the transfer and transformation mechanisms of non-point source pollution from a micro level. Finally, by employing the data of Nenjiang river basin, the paper assesses the impacts of drought on the surface water quality from a macro level.


InterConf ◽  
2021 ◽  
pp. 413-421
Author(s):  
Jingyao Su ◽  
Simon Courtenay

Teck's Castle Project is the largest coal mine project to be mined in Canada. This article is an environmental assessment of Teck's Castle Project based on five valued ecosystem components (VECs) including: Surface Water Quality, Fish and Fish habitat, Vegetation, Local Employment, and Land Use. I proposed to use a surface water quality model to detect the degree of pollution of the water quality of the surrounding rivers and use an economic multiplier to measure the impact on local economic employment. Through research, I found that the water treatment facilities used by Teck Coal Limited can effectively alleviate the impact of the project on the water quality of the surrounding rivers, and I recommended that Teck Coal Limited wear protective equipment to protect their health when working.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 164
Author(s):  
Monika Puchlik ◽  
Janina Piekutin ◽  
Katarzyna Dyczewska

This article presents the influence of climatic conditions on surface water quality. The research methodology, including physicochemical analysis from the Gołdapa and Bludzia rivers, is presented. The research lasted for two years. The results of the physicochemical studies of the Gołdapa and Bludzia rivers in early spring, spring, and autumn show that each of these seasons impacts the quality of surface waters. Moreover, it was proven that all the parameters are strongly correlated with the air temperature, the sum of daily precipitation, and water levels. For detailed analysis, the obtained results of own research were compared with meteorological and hydrological data from the last 15 years (2005–2021) for the region of north-eastern Poland. It was proven that temperature changes contribute to increased surface water pollution in the north-eastern part of Poland. Waters from areas that humans have not developed are of better quality than those that drain the urban area, which is reflected in the case of the superior quality of the Bludzia river compared to the Gołdapa river. The upward trend in temperature in the Gołdap region indicates that global warming will continue.


Delhi, the most populated city in the country, is the capital of India. The huge population, urbanization and industrial processes contribute to degradation of water quality which is further aggravated by direct disposal of untreated domestic wastewater into the river Yamuna. In Delhi, the sewerage system is badly affected by improper management of the drainage system and insufficient installation of sewers in undeveloped as well as slum areas of the city which degrade the surface water quality of Yamuna River and create unhygienic conditions for the increasing population. In this study, three sewage treatment plants (STPs) have been selected which are situated at Najafgarh, Delhi Gate and Shahdara based on different technologies like Extended Aeration (EA), Biological Filtration and Oxygenated Reactor (BIOFOR) and Phytorid in order to assess the quality of wastewater before and after treatment and determining the removal efficiencies of various parameters. The study reveals that the performance of Delhi Gate and Shahdara STPs based on BIOFOR and Phytorid technologies are more efficient for the treatment of the municipal wastewater which can be further be safely disposed off into surface water and can be used for non-domestic purposes like irrigation, agriculture, cleaning of parks and streets. The effluent quality of Najafgarh STP based on EA technology is found to be less efficient as compared to the BIOFOR and Phytorid technologies. Hence, it is required to be operated and maintained properly with close supervision so as to achieve effluent quality standards as prescribed by the Indian standards


1970 ◽  
Vol 44 (1) ◽  
pp. 65-80 ◽  
Author(s):  
Mahfuza S Sultana ◽  
M Shahidul Islam ◽  
Ratnajit Saha ◽  
MA Al-Mansur

The study was carried out in order to assess the impact of the various pollutants of textile dyeing effluents on the surface water quality of the industrial area inside Dhaka-Narayanganj-Demra (D.N.D) embankment, Narayanganj. Physicochemical parameters such as TSS, TDS, DO, pH, EC, Turbidity, BOD, COD, anionic parameters such as F-, Cl-, NO2 -, NO3 -, SO4 - and PO4 3- and heavy metals such as Pb, Zn, Cd and Cu of the samples were investigated by using various techniques. The results showed that, textile dyeing industries inside D.N.D embankment area discharges effluents composed of various physicochemical and anionic pollutants at considerably higher level compared to pollution limit. Further, the surface water of the D.N.D channel, ponds and lakes around the studied textile dyeing industries also contain various physicochemical and anionic pollutants at intolerable limit. A significant correlation was also observed among some important water parameters of the effluents and surface water. The above findings point out that the surface water around the studied textile dyeing industries is highly polluted by the industrial activities of the D.N.D. embankment area and not good for human consumption. Key words: Industrial effluents, D.N.D embankment, Surface water quality, Environmental impact.      doi: 10.3329/bjsir.v44i1.2715 Bangladesh J. Sci. Ind. Res. 44(1), 65-80, 2009


Sign in / Sign up

Export Citation Format

Share Document