scholarly journals Comprendre la dynamique atmosphérique pour mieux reconstituer l'altitude passée des chaînes de montagnes

2020 ◽  
pp. 023
Author(s):  
Svetlana Botsyun ◽  
Pierre Sepulchre ◽  
Camille Risi

Comprendre la dynamique de soulèvement d'une chaîne de montagne nécessite d'en estimer l'altitude passée. C'est le but de la paléoaltimétrie. La méthode la plus répandue utilise la composition isotopique en oxygène des roches carbonatées formées dans les sols et à partir des sédiments lacustres. Celle-ci reflète la composition de la pluie passée qui, dans le monde actuel et dans la plupart des chaînes de montagnes, s'appauvrit progressivement en isotopes lourds avec l'altitude. En supposant que cet appauvrissement reste valide dans le passé, l'altitude du plateau tibétain à l'Éocène (il y a environ 42 millions d'années) est estimée à 4 000 m environ. Mais d'autres marqueurs de l'altitude passée indiquent au contraire des altitudes inférieures à 2 000 m. La relation entre composition isotopique des pluies et altitude observée aujourd'hui s'applique-t-elle à l'Éocène ? C'est ce que nous avons essayé de vérifier en utilisant un modèle de circulation générale atmosphérique, LMDZ-iso. On trouve qu'à l'Éocène la circulation atmosphérique et les processus hydrologiques étaient tellement différents de l'actuel que les observations isotopiques dans les roches carbonatées se trouvent finalement être cohérentes avec des altitudes relativement faibles. Les différentes méthodes de paléo-altimétrie se retrouvent ainsi réconciliées et en accord avec un soulèvement récent (post-Éocène) du plateau tibétain. Understanding the uplift dynamics of a mountain range requires estimating past altitude. This is the purpose of the paleo-altimetry. The most commonly applied paleo-altimetry method is based on the isotopic oxygen composition of the carbonate archives. It reflects the composition of past rain, which at present-day and in the most mountain ranges becomes progressively more depleted in heavy isotopes with altitude. Assuming that this depletion remains valid in the past, the elevation of the Tibetan Plateau in the Eocene (about 42 millions years ago) is estimated to be about 4 000 m. However, other proxy data indicate on the contrary low altitudes. Is the relationship between the rain isotopic composition and the altitude that is observed today applicable to the Eocene? This is what we tried to verify using an atmospheric general circulation model, LMDZ-iso. We find that in the Eocene, the atmospheric circulation and hydrological processes were so different to the present-day that the isotopic observations in the Eocene carbonates are actually consistent with relatively low altitudes of the Plateau. This allows us to reconcile different methods of paleo-altimetry in agreement with more recent (post-Eocene) uplift of the Tibetan Plateau.

Author(s):  
Robert A. Spicer ◽  
Tao Su ◽  
Paul J. Valdes ◽  
Alexander Farnsworth ◽  
Fei-Xiang Wu ◽  
...  

AbstractThe Tibetan Plateau was built through a succession of Gondwanan terranes colliding with Asia during the Mesozoic. These accretions produced a complex Paleogene topography of several predominantly east–west trending mountain ranges separated by deep valleys. Despite this piecemeal assembly and resultant complex relief, Tibet has traditionally been thought of as a coherent entity rising as one unit. This has led to the widely used phrase ‘the uplift of the Tibetan Plateau’, which is a false concept borne of simplistic modelling and confounds understanding the complex interactions between topography climate and biodiversity. Here, using the rich palaeontological record of the Tibetan region, we review what is known about the past topography of the Tibetan region using a combination of quantitative isotope and fossil palaeoaltimetric proxies, and present a new synthesis of the orography of Tibet throughout the Paleogene. We show why ‘the uplift of the Tibetan Plateau’ never occurred, and quantify a new pattern of topographic and landscape evolution that contributed to the development of today’s extraordinary Asian biodiversity.


2020 ◽  
Author(s):  
Sebastian G. Mutz ◽  
Todd A. Ehlers

<p>The interpretation of Earth surface archives often requires consideration of distant off-site events. One such event is the surface uplift of Earth’s major mountain ranges, which affects climate and the Earth’s surface globally. In this study, the individual and synergistic climatic effects of topographic changes in major mountain ranges are explored with a series of General Circulation Model (GCM) experiments and analyses of atmospheric teleconnections. The GCM experiments are forced with different topographic scenarios for Himalaya-Tibet (TBT) and the Andes (ADS), while environmental boundary conditions are kept constant. The topographic scenarios are constructed by successively lowering modern topography to 0% of its modern height in increments of 25%. This results in a total of 5 topographic scenarios for TBT (tbt100, tbt075, tbt050, tbt025, tbt000) and ADS (ads100, ads075, ads050, ads025, ads000). TBT scenarios are then nested in ADS scenarios, resulting in a total of 25 experiments with unique topographic settings. The climate for each of those 25 scenarios is simulated with the GCM ECHAM5-wiso. We then explore possible synergies and distant impacts of topographic changes by testing the hypothesis that varying ADS has no effect on simulated climate conditions in the TBT region (c_tbt) and vice versa. This can be expressed as the null hypothesis c_tbt(ads100) = c_tbt(ads075) = c_tbt(ads050) = c_tbt(ads025) = c_tbt(ads000) for each of the 5 TBT scenarios, and vice versa. We conduct Kruskal-Wallis tests for a total of 10 treatment sets to address these hypotheses. The results suggest that ADS climate is mostly independent of TBT topography changes, whereas TBT climate is sensitive to ADS topography changes when TBT topography is high, but insensitive when TBT topography is strongly reduced. Analyses of atmospheric pressure fields suggest that TBT height acts as a control on cross-equatorial atmospheric transport and modifies the impact of ADS topography on northern hemisphere climate. These results dictate a more careful consideration of global (off-site) conditions in the interpretation of Earth surface records.</p>


2013 ◽  
Vol 70 (10) ◽  
pp. 3288-3301 ◽  
Author(s):  
Hyo-Seok Park ◽  
Shang-Ping Xie ◽  
Seok-Woo Son

Abstract The orographic effect of the Tibetan Plateau on atmospheric poleward heat transport is investigated using an atmospheric general circulation model. The linear interference between the Tibetan Plateau–induced winds and the eddy temperature field associated with the land–sea thermal contrast is a key factor for enhancing the poleward stationary eddy heat transport. Specifically, Tibetan Plateau–induced stationary waves produce northerlies over the cold eastern Eurasian continent, leading to a poleward heat transport. In another hot spot of stationary eddy heat transport over the eastern North Pacific, Tibetan Plateau–induced stationary waves transport relatively warm marine air northward. In an experiment where the Tibetan Plateau is removed, the poleward heat transport is mostly accomplished by transient eddies, similar to the Southern Hemisphere. In the presence of the Tibetan Plateau, the enhanced stationary eddy heat transport is offset by a comparable reduction in transient eddy heat transport. This compensation between stationary and transient eddy heat transport is seen in observed interannual variability. Both the model and observations indicate that an enhanced poleward heat transport by stationary waves weakens transient eddies by decreasing the meridional temperature gradient and the associated westerlies in midlatitudes.


2010 ◽  
Vol 138 (6) ◽  
pp. 2375-2384 ◽  
Author(s):  
Qing Bao ◽  
Jing Yang ◽  
Yimin Liu ◽  
Guoxiong Wu ◽  
Bin Wang

Abstract Anomalous warming occurred over the Tibetan Plateau (TP) before and during the disastrous freezing rain and heavy snow hitting central and southern China in January 2008. The relationship between the TP warming and this extreme event is investigated with an atmospheric general circulation model. Two perpetual runs were performed. One is forced by the climatological mean sea surface temperatures in January as a control run; and the other has the same model setting as the control run except with an anomalous warming over the TP that mimics the observed temperature anomaly. The numerical results demonstrate that the TP warming induces favorable circulation conditions for the occurrence of this extreme event, which include the deepened lower-level South Asian trough, the enhanced lower-level southwesterly moisture transport in central-southern China, the lower-level cyclonic shear in the southerly flow over southeastern China, and the intensified Middle East jet stream in the middle and upper troposphere. Moreover, the anomalous TP warming results in a remarkable cold anomaly near the surface and a warm anomaly aloft over central China, forming a stable stratified inversion layer that favors the formation of the persistent freezing rain. The possible physical linkages between the TP warming and the relevant resultant circulation anomalies are proposed. The potential reason of the anomalous TP warming during the 2007–08 winter is also discussed.


2021 ◽  
pp. 1-36
Author(s):  
Soo-Hyun Seok ◽  
Kyong-Hwan Seo

AbstractRecent studies have highlighted that a primary mechanism of the East Asian summer monsoon (EASM) is the fluid dynamical response to the Tibetan Plateau (TP), that is, orographically forced Rossby waves. With this mechanism in mind, this study explores how changes in the location of the TP affect the EASM precipitation. Specifically, the TP is moved in the four cardinal directions using idealized general circulation model experiments. The results show that the monsoon aspects are entirely determined by the location of the TP. Interestingly, the strongest EASM precipitation occurs when the TP is situated near its current location, a situation in which downstream southerlies are well developed from the surface to aloft. However, southerlies into the EASM region weaken as the TP moves, which in turn reduces the precipitation. Nevertheless, as long as it moves in the east–west direction, the TP is likely to force the stationary waves that induce precipitation over the mid-latitudes (not necessarily over East Asia). In contrast, moving the TP well north of its original location does not induce strong monsoon flows over the EASM region, resulting in the driest case. Meanwhile, although the southward movement of the TP triggers downstream southerlies to some extent, it does not lead to an increase in the precipitation. Overall, these results show that the location of the TP is crucial in determining the EASM precipitation, and the latter is much more sensitive to the displacement of the TP in the meridional direction than in the zonal direction.


2020 ◽  
Vol 33 (18) ◽  
pp. 7945-7965 ◽  
Author(s):  
J. C. H. Chiang ◽  
W. Kong ◽  
C. H. Wu ◽  
D. S. Battisti

AbstractThe East Asian summer monsoon is unique among summer monsoon systems in its complex seasonality, exhibiting distinct intraseasonal stages. Previous studies have alluded to the downstream influence of the westerlies flowing around the Tibetan Plateau as key to its existence. We explore this hypothesis using an atmospheric general circulation model that simulates the intraseasonal stages with fidelity. Without a Tibetan Plateau, East Asia exhibits only one primary convective stage typical of other monsoons. As the plateau is introduced, the distinct rainfall stages—spring, pre-mei-yu, mei-yu, and midsummer—emerge, and rainfall becomes more intense overall. This emergence coincides with a pronounced modulation of the westerlies around the plateau and extratropical northerlies penetrating northeastern China. The northerlies meridionally constrain the moist southerly flow originating from the tropics, leading to a band of lower-tropospheric convergence and humidity front that produces the rainband. The northward migration of the westerlies away from the northern edge of the plateau leads to a weakening of the extratropical northerlies, which, coupled with stronger monsoonal southerlies, leads to the northward migration of the rainband. When the peak westerlies migrate north of the plateau during the midsummer stage, the extratropical northerlies disappear, leaving only the monsoon low-level circulation that penetrates northeastern China; the rainband disappears, leaving isolated convective rainfall over northeastern China. In short, East Asian rainfall seasonality results from the interaction of two seasonally evolving circulations—the monsoonal southerlies that strengthen and extend northward, and the midlatitude northerlies that weaken and eventually disappear—as summer progresses.


2020 ◽  
Author(s):  
Gilles Ramstein ◽  
Baohuang Su ◽  
Dabang Jiang ◽  
Ran Zhang ◽  
Pierre Sepulchre

<p>Since late Eocene (40 Ma), atmospheric CO2 drastically decreased from 4 to 1 PAL.  During this period, two major geological events occurred over Asia: the India/Asia collision producing the uplift of large mountain ranges and the shrinkage of the Paratethys (G. Ramstein et al., Nature, 1997; F. Fluteau et la., JGR, 1999). Most modeling studies focused first on the sensitivity of AGCMs to the Tibetan plateau elevation through simple experiments; then new simulations accounting for more realistic description of paleogeographic reconstructions have been published. Indeed, progress has been done concerning both: paratethys evolution (Z. Zhang et al., PAL PAL PAL, 2007), chronology of uplifts of different mountain ranges (R. Zhang et al., JGR, 2017) and large TP northern shift (R. Zhang et al., EPSL, 2018), but again these experiments focused mostly on atmosphere circulation and hydrologic pattern (monsoon evolution) not specifically on their impacts on ocean dynamics.</p><p>Therefore, this study aims to investigate the role of TP uplift on Northern hemisphere ocean circulation through long runs of coupled ocean atmosphere model to analyze its impact not only on atmosphere but also on ocean dynamics. We provided a series of sensitivity simulations disentangling the two different factors, pCO2 decrease and TP uplift. These simulations allow analyzing the response to TP uplift in a warm high CO2 world as Eocene and in a cold low CO2 world as Quaternary (B. Su et al., CP, 2018).</p><p>We describe how the TP uplift through changes of atmosphere (surface winds and planetary waves) and hydrology (runoff and precipitation/evaporation patterns) modified the meridional circulation in the North Atlantic and Pacific basins with emphasize on the causes of the two different basins sensitivity to this major mountain range uplift in both contexts.</p>


Sign in / Sign up

Export Citation Format

Share Document