On the Synergistic Climatic Effects of Covarying Major Mountain Range Topographies

Author(s):  
Sebastian G. Mutz ◽  
Todd A. Ehlers

<p>The interpretation of Earth surface archives often requires consideration of distant off-site events. One such event is the surface uplift of Earth’s major mountain ranges, which affects climate and the Earth’s surface globally. In this study, the individual and synergistic climatic effects of topographic changes in major mountain ranges are explored with a series of General Circulation Model (GCM) experiments and analyses of atmospheric teleconnections. The GCM experiments are forced with different topographic scenarios for Himalaya-Tibet (TBT) and the Andes (ADS), while environmental boundary conditions are kept constant. The topographic scenarios are constructed by successively lowering modern topography to 0% of its modern height in increments of 25%. This results in a total of 5 topographic scenarios for TBT (tbt100, tbt075, tbt050, tbt025, tbt000) and ADS (ads100, ads075, ads050, ads025, ads000). TBT scenarios are then nested in ADS scenarios, resulting in a total of 25 experiments with unique topographic settings. The climate for each of those 25 scenarios is simulated with the GCM ECHAM5-wiso. We then explore possible synergies and distant impacts of topographic changes by testing the hypothesis that varying ADS has no effect on simulated climate conditions in the TBT region (c_tbt) and vice versa. This can be expressed as the null hypothesis c_tbt(ads100) = c_tbt(ads075) = c_tbt(ads050) = c_tbt(ads025) = c_tbt(ads000) for each of the 5 TBT scenarios, and vice versa. We conduct Kruskal-Wallis tests for a total of 10 treatment sets to address these hypotheses. The results suggest that ADS climate is mostly independent of TBT topography changes, whereas TBT climate is sensitive to ADS topography changes when TBT topography is high, but insensitive when TBT topography is strongly reduced. Analyses of atmospheric pressure fields suggest that TBT height acts as a control on cross-equatorial atmospheric transport and modifies the impact of ADS topography on northern hemisphere climate. These results dictate a more careful consideration of global (off-site) conditions in the interpretation of Earth surface records.</p>

2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Velautham Daksiya ◽  
Pradeep Mandapaka ◽  
Edmond Y. M. Lo

The impact of changing climate on the frequency of daily rainfall extremes in Jakarta, Indonesia, is analysed and quantified. The study used three different models to assess the changes in rainfall characteristics. The first method involves the use of the weather generator LARS-WG to quantify changes between historical and future daily rainfall maxima. The second approach consists of statistically downscaling general circulation model (GCM) output based on historical empirical relationships between GCM output and station rainfall. Lastly, the study employed recent statistically downscaled global gridded rainfall projections to characterize climate change impact rainfall structure. Both annual and seasonal rainfall extremes are studied. The results show significant changes in annual maximum daily rainfall, with an average increase as high as 20% in the 100-year return period daily rainfall. The uncertainty arising from the use of different GCMs was found to be much larger than the uncertainty from the emission scenarios. Furthermore, the annual and wet seasonal analyses exhibit similar behaviors with increased future rainfall, but the dry season is not consistent across the models. The GCM uncertainty is larger in the dry season compared to annual and wet season.


2020 ◽  
pp. 023
Author(s):  
Svetlana Botsyun ◽  
Pierre Sepulchre ◽  
Camille Risi

Comprendre la dynamique de soulèvement d'une chaîne de montagne nécessite d'en estimer l'altitude passée. C'est le but de la paléoaltimétrie. La méthode la plus répandue utilise la composition isotopique en oxygène des roches carbonatées formées dans les sols et à partir des sédiments lacustres. Celle-ci reflète la composition de la pluie passée qui, dans le monde actuel et dans la plupart des chaînes de montagnes, s'appauvrit progressivement en isotopes lourds avec l'altitude. En supposant que cet appauvrissement reste valide dans le passé, l'altitude du plateau tibétain à l'Éocène (il y a environ 42 millions d'années) est estimée à 4 000 m environ. Mais d'autres marqueurs de l'altitude passée indiquent au contraire des altitudes inférieures à 2 000 m. La relation entre composition isotopique des pluies et altitude observée aujourd'hui s'applique-t-elle à l'Éocène ? C'est ce que nous avons essayé de vérifier en utilisant un modèle de circulation générale atmosphérique, LMDZ-iso. On trouve qu'à l'Éocène la circulation atmosphérique et les processus hydrologiques étaient tellement différents de l'actuel que les observations isotopiques dans les roches carbonatées se trouvent finalement être cohérentes avec des altitudes relativement faibles. Les différentes méthodes de paléo-altimétrie se retrouvent ainsi réconciliées et en accord avec un soulèvement récent (post-Éocène) du plateau tibétain. Understanding the uplift dynamics of a mountain range requires estimating past altitude. This is the purpose of the paleo-altimetry. The most commonly applied paleo-altimetry method is based on the isotopic oxygen composition of the carbonate archives. It reflects the composition of past rain, which at present-day and in the most mountain ranges becomes progressively more depleted in heavy isotopes with altitude. Assuming that this depletion remains valid in the past, the elevation of the Tibetan Plateau in the Eocene (about 42 millions years ago) is estimated to be about 4 000 m. However, other proxy data indicate on the contrary low altitudes. Is the relationship between the rain isotopic composition and the altitude that is observed today applicable to the Eocene? This is what we tried to verify using an atmospheric general circulation model, LMDZ-iso. We find that in the Eocene, the atmospheric circulation and hydrological processes were so different to the present-day that the isotopic observations in the Eocene carbonates are actually consistent with relatively low altitudes of the Plateau. This allows us to reconcile different methods of paleo-altimetry in agreement with more recent (post-Eocene) uplift of the Tibetan Plateau.


1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


Ocean Science ◽  
2014 ◽  
Vol 10 (6) ◽  
pp. 967-975 ◽  
Author(s):  
A. J. G. Nurser ◽  
S. Bacon

Abstract. The first (and second) baroclinic deformation (or Rossby) radii are presented north of ~60° N, focusing on deep basins and shelf seas in the high Arctic Ocean, the Nordic seas, Baffin Bay, Hudson Bay and the Canadian Arctic Archipelago, derived from climatological ocean data. In the high Arctic Ocean, the first Rossby radius increases from ~5 km in the Nansen Basin to ~15 km in the central Canadian Basin. In the shelf seas and elsewhere, values are low (1–7 km), reflecting weak density stratification, shallow water, or both. Seasonality strongly impacts the Rossby radius only in shallow seas, where winter homogenization of the water column can reduce it to below 1 km. Greater detail is seen in the output from an ice–ocean general circulation model, of higher resolution than the climatology. To assess the impact of secular variability, 10 years (2003–2012) of hydrographic stations along 150° W in the Beaufort Gyre are also analysed. The first-mode Rossby radius increases over this period by ~20%. Finally, we review the observed scales of Arctic Ocean eddies.


2013 ◽  
Vol 9 (2) ◽  
pp. 871-886 ◽  
Author(s):  
M. Casado ◽  
P. Ortega ◽  
V. Masson-Delmotte ◽  
C. Risi ◽  
D. Swingedouw ◽  
...  

Abstract. In mid and high latitudes, the stable isotope ratio in precipitation is driven by changes in temperature, which control atmospheric distillation. This relationship forms the basis for many continental paleoclimatic reconstructions using direct (e.g. ice cores) or indirect (e.g. tree ring cellulose, speleothem calcite) archives of past precipitation. However, the archiving process is inherently biased by intermittency of precipitation. Here, we use two sets of atmospheric reanalyses (NCEP (National Centers for Environmental Prediction) and ERA-interim) to quantify this precipitation intermittency bias, by comparing seasonal (winter and summer) temperatures estimated with and without precipitation weighting. We show that this bias reaches up to 10 °C and has large interannual variability. We then assess the impact of precipitation intermittency on the strength and stability of temporal correlations between seasonal temperatures and the North Atlantic Oscillation (NAO). Precipitation weighting reduces the correlation between winter NAO and temperature in some areas (e.g. Québec, South-East USA, East Greenland, East Siberia, Mediterranean sector) but does not alter the main patterns of correlation. The correlations between NAO, δ18O in precipitation, temperature and precipitation weighted temperature are investigated using outputs of an atmospheric general circulation model enabled with stable isotopes and nudged using reanalyses (LMDZiso (Laboratoire de Météorologie Dynamique Zoom)). In winter, LMDZiso shows similar correlation values between the NAO and both the precipitation weighted temperature and δ18O in precipitation, thus suggesting limited impacts of moisture origin. Correlations of comparable magnitude are obtained for the available observational evidence (GNIP (Global Network of Isotopes in Precipitation) and Greenland ice core data). Our findings support the use of archives of past δ18O for NAO reconstructions.


2007 ◽  
Vol 20 (2) ◽  
pp. 353-374 ◽  
Author(s):  
J. Ballabrera-Poy ◽  
R. Murtugudde ◽  
R-H. Zhang ◽  
A. J. Busalacchi

Abstract The ability to use remotely sensed ocean color data to parameterize biogenic heating in a coupled ocean–atmosphere model is investigated. The model used is a hybrid coupled model recently developed at the Earth System Science Interdisciplinary Center (ESSIC) by coupling an ocean general circulation model with a statistical atmosphere model for wind stress anomalies. The impact of the seasonal cycle of water turbidity on the annual mean, seasonal cycle, and interannual variability of the coupled system is investigated using three simulations differing in the parameterization of the vertical attenuation of downwelling solar radiation: (i) a control simulation using a constant 17-m attenuation depth, (ii) a simulation with the spatially varying annual mean of the satellite-derived attenuation depth, and (iii) a simulation accounting for the seasonal cycle of the attenuation depth. The results indicate that a more realistic attenuation of solar radiation slightly reduces the cold bias of the model. While a realistic attenuation of solar radiation hardly affects the annual mean and the seasonal cycle due to anomaly coupling, it significantly affects the interannual variability, especially when the seasonal cycle of the attenuation depth is used. The seasonal cycle of the attenuation depth interacts with the low-frequency equatorial dynamics to enhance warm and cold anomalies, which are further amplified via positive air–sea feedbacks. These results also indicate that interannual variability of the attenuation depths is required to capture the asymmetric biological feedbacks during cold and warm ENSO events.


2013 ◽  
Vol 17 (1) ◽  
pp. 1-20 ◽  
Author(s):  
B. Shrestha ◽  
M. S. Babel ◽  
S. Maskey ◽  
A. van Griensven ◽  
S. Uhlenbrook ◽  
...  

Abstract. This paper evaluates the impact of climate change on sediment yield in the Nam Ou basin located in northern Laos. Future climate (temperature and precipitation) from four general circulation models (GCMs) that are found to perform well in the Mekong region and a regional circulation model (PRECIS) are downscaled using a delta change approach. The Soil and Water Assessment Tool (SWAT) is used to assess future changes in sediment flux attributable to climate change. Results indicate up to 3.0 °C shift in seasonal temperature and 27% (decrease) to 41% (increase) in seasonal precipitation. The largest increase in temperature is observed in the dry season while the largest change in precipitation is observed in the wet season. In general, temperature shows increasing trends but changes in precipitation are not unidirectional and vary depending on the greenhouse gas emission scenarios (GHGES), climate models, prediction period and season. The simulation results show that the changes in annual stream discharges are likely to range from a 17% decrease to 66% increase in the future, which will lead to predicted changes in annual sediment yield ranging from a 27% decrease to about 160% increase. Changes in intra-annual (monthly) discharge as well as sediment yield are even greater (−62 to 105% in discharge and −88 to 243% in sediment yield). A higher discharge and sediment flux are expected during the wet seasons, although the highest relative changes are observed during the dry months. The results indicate high uncertainties in the direction and magnitude of changes of discharge as well as sediment yields due to climate change. As the projected climate change impact on sediment varies remarkably between the different climate models, the uncertainty should be taken into account in both sediment management and climate change adaptation.


2011 ◽  
Vol 11 (8) ◽  
pp. 24085-24125 ◽  
Author(s):  
E. M. Leibensperger ◽  
L. J. Mickley ◽  
D. J. Jacob ◽  
W.-T. Chen ◽  
J. H. Seinfeld ◽  
...  

Abstract. We use the GEOS-Chem chemical transport model combined with the GISS general circulation model to calculate the aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950–2050 period, based on historical emission inventories and future projections from the IPCC A1B scenario. The aerosol simulation is evaluated with observed spatial distributions and 1980–2010 trends of aerosol concentrations and wet deposition in the contiguous US. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that it peaked in 1970–1990, with values over the eastern US (east of 100° W) of −2.0 W m−2 for direct forcing including contributions from sulfate (−2.0 W m−2), nitrate (−0.2 W m−2), organic carbon (−0.2 W m−2), and black carbon (+0.4 W m−2). The aerosol indirect effect is of comparable magnitude to the direct forcing. We find that the forcing declined sharply from 1990 to 2010 (by 0.8 W m−2 direct and 1.0 W m−2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60 % from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources may have already been realized by 2010, however some additional warming is expected through 2020. The small positive radiative forcing from US BC emissions (+0.3 W m−2 over the eastern US in 2010) suggests that an emission control strategy focused on BC would have only limited climate benefit.


2018 ◽  
Vol 18 (5) ◽  
pp. 3147-3171 ◽  
Author(s):  
Scarlet Stadtler ◽  
David Simpson ◽  
Sabine Schröder ◽  
Domenico Taraborrelli ◽  
Andreas Bott ◽  
...  

Abstract. The impact of six heterogeneous gas–aerosol uptake reactions on tropospheric ozone and nitrogen species was studied using two chemical transport models, the Meteorological Synthesizing Centre-West of the European Monitoring and Evaluation Programme (EMEP MSC-W) and the European Centre Hamburg general circulation model combined with versions of the Hamburg Aerosol Model and Model for Ozone and Related chemical Tracers (ECHAM-HAMMOZ). Species undergoing heterogeneous reactions in both models include N2O5, NO3, NO2, O3, HNO3, and HO2. Since heterogeneous reactions take place at the aerosol surface area, the modelled surface area density (Sa) of both models was compared to a satellite product retrieving the surface area. This comparison shows a good agreement in global pattern and especially the capability of both models to capture the extreme aerosol loadings in east Asia. The impact of the heterogeneous reactions was evaluated by the simulation of a reference run containing all heterogeneous reactions and several sensitivity runs. One reaction was turned off in each sensitivity run to compare it with the reference run. The analysis of the sensitivity runs confirms that the globally most important heterogeneous reaction is the one of N2O5. Nevertheless, NO2, HNO3, and HO2 heterogeneous reactions gain relevance particularly in east Asia due to the presence of high NOx concentrations and high Sa in the same region. The heterogeneous reaction of O3 itself on dust is of minor relevance compared to the other heterogeneous reactions. The impacts of the N2O5 reactions show strong seasonal variations, with the biggest impacts on O3 in springtime when photochemical reactions are active and N2O5 levels still high. Evaluation of the models with northern hemispheric ozone surface observations yields a better agreement of the models with observations in terms of concentration levels, variability, and temporal correlations at most sites when the heterogeneous reactions are incorporated. Our results are loosely consistent with results from earlier studies, although the magnitude of changes induced by N2O5 reaction is at the low end of estimates, which seems to fit a trend, whereby the more recent the study the lower the impacts of these reactions.


Sign in / Sign up

Export Citation Format

Share Document