scholarly journals Theoretical studies of oscillations of the cleaning working bodies spiral potato separator

Author(s):  
V. Adamchuk ◽  
V. Bulgakov ◽  
I. Holovach ◽  
Z. Ruzhylo

Purpose. Increase of efficiency of potato tubers cleaning process from impurities of new construction of spiral separator taking into account and activation of vibrating process of its cleaning spiral springs. Methods. The research was carried out with the use of higher mathematics, theoretical mechanics, elasticity theory and methods of programming and numerical calculations with the help of PC. Results. For the developed construction of the spiral separator of potato heap, which consists of cantilever mounted cleaning spiral springs, the mathematical model of free ends of spiral oscillations under the influence of external load is developed. An equivalent bending scheme of the cantilever spiral under the action of uniformly distributed load, selected corresponding axes of coordinates and parameters characterizing the vibrational process of the spiral end are determined. For such an equivalent scheme, a differential equation of cleaning spiral oscillations in partial derivatives is made for the first time. After the corresponding transformations, the differential equation was numerically solved according to the program, by means of a PC. This made it possible to find the dependence of the change in the winding pitch of the cleaning spiral spring as a result of its deformation, in particular, the simultaneous longitudinal stretching and transverse deflection, on its length. Also new analytical dependences of the reduced moment of inertia of the section of the cantilever spring are received, on the basis of which graphic dependences of change of its value on length of a spiral spring at the set diameter, pitch of skills, angle of rise of a coil and angular speed of rotation have been received on the PC. Conclusions 1.The calculated mathematical model of vibrations of the working bodies of the spiral separator of potato heap is constructed, as a result the differential equation of transverse bending vibrations of its console cleaning spiral spring is made. 2.On the basis of the differential equation solution of transverse bending oscillations of the cleaning spiral spring the analytical expressions describing the law of vibrational process and deflection of the spiral spring at any moment of time for any point of its longitudinal axis are received. 3.Analytical dependencies are obtained to determine the variable pitch of a curved coil spring at any given time and for any inter-turn lumen during this oscillatory process. 4.At the angular velocity of the spiral spring, which is equal to ω = 30 rad∙s-1, the density of the material of which the spring is made, = 7700 kg∙m-3, modulus of elasticity Е = 2∙1011 Pa, the radius of the bar = 8.5 mm, uniformly distributed spiral spring load by potato heap intensity 1000 Н∙m-1 the total spring deflection along its length varies from 0 to 0.25 m. 5.The obtained analytical expressions of restriction on the maximum change of the cleaning spiral spring pitch at its fluctuations from the condition that potato tubers do not fall into the spring inter-turn space taking into account structural and kinematic parameters of the cleaning spiral spring, the material from which it is made, technological modes of operation and tubers' sizes. 6.As the numerical calculations on the PC show, a cleaning spiral spring with the above parameters and an initial winding pitch S = 48 mm at the considered transverse oscillations at the expense of deformation can change a step up to 54 mm that will provide not falling out of a potato tuber outside of a separator of a potato heap. Keywords: potatoes, digging, impurities, cantilever spiral spring, oscillations, differential equation, numerical calculations on PC.

2014 ◽  
Vol 986-987 ◽  
pp. 1418-1421
Author(s):  
Jun Shan Li

In this paper, we propose a meshless method for solving the mathematical model concerning the leakage problem when the pressure is tested in the gas pipeline. The method of radial basis function (RBF) can be used for solving partial differential equation by writing the solution in the form of linear combination of radius basis functions, that is, when integrating the definite conditions, one can find the combination coefficients and then the numerical solution. The leak problem is a kind of inverse problem that is focused by many engineers or mathematical researchers. The strength of the leak can find easily by the additional conditions and the numerical solutions.


1995 ◽  
Vol 03 (03) ◽  
pp. 653-659 ◽  
Author(s):  
J. J. NIETO ◽  
A. TORRES

We introduce a new mathematical model of aneurysm of the circle of Willis. It is an ordinary differential equation of second order that regulates the velocity of blood flow inside the aneurysm. By using some recent methods of nonlinear analysis, we prove the existence of solutions with some qualitative properties that give information on the causes of rupture of the aneurysm.


Author(s):  
Л.Ф. Сафиуллина

В статье рассмотрен вопрос идентифицируемости математической модели кинетики химической реакции. В процессе решения обратной задачи по оценке параметров модели, характеризующих процесс, нередко возникает вопрос неединственности решения. На примере конкретной реакции продемонстрирована необходимость проводить анализ идентифицируемости модели перед проведением численных расчетов по определению параметров модели химической реакции. The identifiability of the mathematical model of the kinetics of a chemical reaction is investigated in the article. In the process of solving the inverse problem of estimating the parameters of the model, the question arises of the non-uniqueness of the solution. On the example of a specific reaction, the need to analyze the identifiability of the model before carrying out numerical calculations to determine the parameters of the reaction model was demonstrated.


2022 ◽  
Vol 14 (4) ◽  
pp. 139-148
Author(s):  
Aleksandr Poluektov ◽  
Konstantin Zolnikov ◽  
V. Antsiferova

The mathematical model and algorithms of oscillatory movements are considered. Various factors affecting the oscillatory process are considered. Oscillatory movements are constructed in the MVSTUDIUM modeling environment. The schemes of three computer models demonstrating oscillatory processes are determined: a model of a pendulum with a non-movable suspension point, a model of a pushing pendulum with friction force and a model of a breaking pendulum. Classes are being built to execute models with embedded properties, as well as with the ability to export the created classes to other models, and embed classes created by the program developer into the model. Creation of 2D and 3D models of oscillatory processes, an experiment behavior map and a virtual stand.


Author(s):  
О. Ю. Воляник ◽  
О. З. Гладчук

Development  and  analysis  of  mathematical  model  of  oscillation  processes  that  occur during material processing in centrifugal drum washing machines, determination of absence conditions of contact deformations of working bodies and body of centrifugal machine.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012158
Author(s):  
N V Larionov

Abstract The model of a single-emitter laser generating in the regime of small number of photons in the cavity mode is theoretically investigated. Based on a system of equations for different moments of the field operators the analytical expressions for mean photon number and photon number variance are obtained. Using the master equation approach the differential equation for the phase-averaged quasi-probability Q is derived. For some limiting cases the exact solutions of this equation are found.


Author(s):  
Vasiliy Olshansky ◽  
Stanislav Olshansky ◽  
Oleksіі Tokarchuk

The motion of an oscillatory system with one degree of freedom, described by the generalized Rayleigh differential equation, is considered. The generalization is achieved by replacing the cubic term, which expresses the dissipative strength of the equation of motion, by a power term with an arbitrary positive exponent. To study the oscillatory process involved the method of energy balance. Using it, an approximate differential equation of the envelope of the graph of the oscillatory process is compiled and its analytical solution is constructed from which it follows that quasilinear frictional self-oscillations are possible only when the exponent is greater than unity. The value of the amplitude of the self-oscillations in the steady state also depends on the value of the indicator. A compact formula for calculating this amplitude is derived. In the general case, the calculation involves the use of a gamma function table. In the case when the exponent is three, the amplitude turned out to be the same as in the asymptotic solution of the Rayleigh equation that Stoker constructed. The amplitude is independent of the initial conditions. Self-oscillations are impossible if the exponent is less than or equal to unity, since depending on the initial deviation of the system, oscillations either sway (instability of the movement is manifested) or the range decreases to zero with a limited number of cycles, which is usually observed with free oscillations of the oscillator with dry friction. These properties of the oscillatory system are also confirmed by numerical computer integration of the differential equation of motion for specific initial data. In the Maple environment, the oscillator trajectories are constructed for various values of the nonlinearity index in the expression of the viscous resistance force and a corresponding comparative analysis is carried out, which confirms the adequacy of approximate analytical solutions.


2021 ◽  
Vol 56 (2) ◽  
pp. 195-223
Author(s):  
Igoris Belovas ◽  

The paper extends the investigations of limit theorems for numbers satisfying a class of triangular arrays, defined by a bivariate linear recurrence with bivariate linear coefficients. We obtain the partial differential equation and special analytical expressions for the numbers using a semi-exponential generating function. We apply the results to prove the asymptotic normality of special classes of the numbers and specify the convergence rate to the limiting distribution. We demonstrate that the limiting distribution is not always Gaussian.


Author(s):  
Dmitriy Laschov ◽  
Michael Margaliot

Gene regulation plays a central role in the development and functioning of living organisms. Developing a deeper qualitative and quantitative understanding of gene regulation is an important scientific challenge. The Lambda switch is commonly used as a paradigm of gene regulation. Verbal descriptions of the structure and functioning of the Lambda switch have appeared in biological textbooks. We apply fuzzy modeling to transform one such verbal description into a well-defined mathematical model. The resulting model is a piecewise-quadratic, second-order differential equation. It demonstrates functional fidelity with known results while being simple enough to allow a rather detailed analysis. Properties such as the number, location, and domain of attraction of equilibrium points can be studied analytically. Furthermore, the model provides a rigorous explanation for the so-called stability puzzle of the Lambda switch.


Sign in / Sign up

Export Citation Format

Share Document