scholarly journals On Saturated $k$-Sperner Systems

10.37236/4136 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Natasha Morrison ◽  
Jonathan A. Noel ◽  
Alex Scott

Given a set $X$, a collection $\mathcal{F}\subseteq\mathcal{P}(X)$ is said to be $k$-Sperner if it does not contain a chain of length $k+1$ under set inclusion and it is saturated if it is maximal with respect to this property. Gerbner et al. conjectured that, if $|X|$ is sufficiently large with respect to $k$, then the minimum size of a saturated $k$-Sperner system $\mathcal{F}\subseteq\mathcal{P}(X)$ is $2^{k-1}$. We disprove this conjecture by showing that there exists $\varepsilon>0$ such that for every $k$ and $|X| \geq n_0(k)$ there exists a saturated $k$-Sperner system $\mathcal{F}\subseteq\mathcal{P}(X)$ with cardinality at most $2^{(1-\varepsilon)k}$.A collection $\mathcal{F}\subseteq \mathcal{P}(X)$ is said to be an oversaturated $k$-Sperner system if, for every $S\in\mathcal{P}(X)\setminus\mathcal{F}$, $\mathcal{F}\cup\{S\}$ contains more chains of length $k+1$ than $\mathcal{F}$. Gerbner et al. proved that, if $|X|\geq k$, then the smallest such collection contains between $2^{k/2-1}$ and $O\left(\frac{\log{k}}{k}2^k\right)$ elements. We show that if $|X|\geq k^2+k$, then the lower bound is best possible, up to a polynomial factor.

10.37236/692 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Sylwia Cichacz ◽  
Agnieszka Görlich ◽  
Magorzata Zwonek ◽  
Andrzej Żak

A graph $G$ is called $(H;k)$-vertex stable if $G$ contains a subgraph isomorphic to $H$ ever after removing any $k$ of its vertices; stab$(H;k)$ denotes the minimum size among the sizes of all $(H;k)$-vertex stable graphs. In this paper we deal with $(C_{n};k)$-vertex stable graphs with minimum size. For each $n$ we prove that stab$(C_{n};1)$ is one of only two possible values and we give the exact value for infinitely many $n$'s. Furthermore we establish an upper and lower bound for stab$(C_{n};k)$ for $k\geq 2$.


1974 ◽  
Vol 26 (02) ◽  
pp. 388-404 ◽  
Author(s):  
W. J. Thron ◽  
R. H. Warren

Let (X, ) be a topological space. By we denote the family of all Lodato proximities on X which induce . We show that is a complete distributive lattice under set inclusion as ordering. Greatest lower bound and least upper bound are characterized. A number of techniques for constructing elements of are developed. By means of one of these constructions, all covers of any member of can be obtained. Several examples are given which relate to the lattice of all compatible proximities of Čech and the family of all compatible proximities of Efremovič. The paper concludes with a chart which summarizes many of the structural properties of , and .


10.37236/5328 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
István Tomon

The Boolean lattice $2^{[n]}$ is the power set of $[n]$ ordered by inclusion. A chain $c_{0}\subset\cdots\subset c_{k}$ in $2^{[n]}$ is rank-symmetric, if $|c_{i}|+|c_{k-i}|=n$ for $i=0,\ldots,k$; and it is symmetric, if $|c_{i}|=(n-k)/2+i$. We show that there exist a bijection $$p: [n]^{(\geq n/2)}\rightarrow [n]^{(\leq n/2)}$$ and a partial ordering $<$ on $[n]^{(\geq n/2)}$ satisfying the following properties:$\subset$ is an extension of $<$ on $[n]^{(\geq n/2)}$;if $C\subset [n]^{(\geq n/2)}$ is a chain with respect to $<$, then $p(C)\cup C$ is a rank-symmetric chain in $2^{[n]}$, where $p(C)=\{p(x): x\in C\}$;the poset $([n]^{(\geq n/2)},<)$ has the so called normalized matching property.We show two applications of this result.A conjecture of  Füredi asks if $2^{[n]}$ can be partitioned into $\binom{n}{\lfloor n/2\rfloor}$ chains such that the size of any two chains differ by at most 1. We prove an asymptotic version of this conjecture with the additional condition that every chain in the partition is rank-symmetric: $2^{[n]}$ can be partitioned into $\binom{n}{\lfloor n/2\rfloor}$ rank-symmetric chains, each of size $\Theta(\sqrt{n})$.Our second application gives a lower bound for the number of symmetric chain partitions of $2^{[n]}$. We show that $2^{[n]}$ has at least $2^{\Omega(2^{n}\log n/\sqrt{n})}$ symmetric chain partitions.


Author(s):  
Dandan Zhang ◽  
Haipeng Qu ◽  
Yanfeng Luo

Let [Formula: see text] be a group and [Formula: see text]. [Formula: see text] is said to be a [Formula: see text]-group if [Formula: see text] is a chain under set inclusion. In this paper, we prove that a finite [Formula: see text]-group is a semidirect product of a Sylow [Formula: see text]-subgroup and an abelian [Formula: see text]-subgroup. For the case of [Formula: see text] being a finite [Formula: see text]-group, we obtain an optimal upper bound of [Formula: see text] for a [Formula: see text] [Formula: see text]-group [Formula: see text]. We also prove that a [Formula: see text] [Formula: see text]-group is metabelian when [Formula: see text] and provide an example showing that a non-abelian [Formula: see text] [Formula: see text]-group is not necessarily metabelian when [Formula: see text]. In particular, [Formula: see text] [Formula: see text]-groups are characterized.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 310
Author(s):  
Girishkumara R ◽  
Lavanya S

It is known that the set of all path sets of a finite connected graph G together with empty set partially ordered by set inclusion relation forms a lattice denoted by PATH(G). In this paper we studied some properties of PATH(G). In fact, it has been shown that an element of PATH(G) is doubly irreducible if and only if it contains a single vertex which is not a cut vertex of G. Also it is proved that PATH(G) is planar if and only if G is a chain of three or more blocks.  


2016 ◽  
Vol 201 ◽  
pp. 14-23
Author(s):  
M. Boostan ◽  
S. Golalizadeh ◽  
N. Soltankhah
Keyword(s):  

Author(s):  
V. I. Benediktovich

An algebraic parameter of a graph – a difference between its maximum degree and its spectral radius is considered in this paper. It is well known that this graph parameter is always nonnegative and represents some measure of deviation of a graph from its regularity. In the last two decades, many papers have been devoted to the study of this parameter. In particular, its lower bound depending on the graph order and diameter was obtained in 2007 by mathematician S. M. Cioabă. In 2017 when studying the upper and the lower bounds of this parameter, M. R. Oboudi made a conjecture that the lower bound of a given parameter for an arbitrary graph is the difference between a maximum degree and a spectral radius of a chain. This is very similar to the analogous statement for the spectral radius of an arbitrary graph whose lower boundary is also the spectral radius of a chain. In this paper, the above conjecture is confirmed for some graph classes.


2008 ◽  
Vol 01 (03) ◽  
pp. 359-367 ◽  
Author(s):  
Xiaojiang Guo ◽  
Fusheng Huang ◽  
K. P. Shum

A semigroup S is called a ∇-semigroup if the set of all its full subsemigroups forms a chain under set inclusion. In this paper, we investigate some properties of such kind of semigroups and establish several characterization theorems of type-A ∇-semigroups. Our theorems generalize the known results of P. R. Jones obtained in 1981 on inverse semigroups whose full inverse subsemigroups form a chain.


10.37236/6026 ◽  
2019 ◽  
Vol 26 (4) ◽  
Author(s):  
Sándor Bozóki ◽  
Péter Gál ◽  
István Marosi ◽  
William D. Weakley

The queens graph $Q_{m \times n}$ has the squares of the $m \times n$ chessboard as its vertices; two squares are adjacent if they are in the same row, column, or diagonal of the board. A set $D$ of squares of $Q_{m \times n}$ is a dominating set for $Q_{m \times n}$ if every square of $Q_{m \times n}$ is either in $D$ or adjacent to a square in $D$. The minimum size of a dominating set of $Q_{m \times n}$ is the domination number, denoted by $\gamma(Q_{m \times n})$. Values of $\gamma(Q_{m \times n}), \, 4 \leq m \leq n \leq 18,\,$ are given here, in each case with a file of minimum dominating sets (often all of them, up to symmetry) in an online appendix. In these ranges for $m$ and $n$, monotonicity fails once: $\gamma(Q_{8\times 11}) = 6 > 5 = \gamma(Q_{9 \times 11}) = \gamma(Q_{10 \times 11}) = \gamma(Q_{11 \times 11})$. Let $g(m)$ [respectively $g^{*}(m)$] be the largest integer such that $m$ queens suffice to dominate the $(m+1) \times g(m)$ board [respectively, to dominate the $(m+1) \times g^{*}(m)$ board with no two queens in a row]. Starting from the elementary bound $g(m) \leq 3m$, domination when the board is far from square is investigated. It is shown (Theorem 2) that $g(m) = 3m$ can only occur when $m \equiv 0, 1, 2, 3, \mbox{or } 4 \mbox{ (mod 9)}$, with an online appendix showing that this does occur for $m \leq 40, m \neq 3$. Also (Theorem 4), if $m \equiv 5, 6, \mbox{or } 7 \mbox{ (mod 9)}$ then $g^{*}(m) \leq 3m-2$, and if $m \equiv 8 \mbox{ (mod 9)}$ then $g^{*}(m) \leq 3m-4$. It is shown that equality holds in these bounds for $m \leq 40 $. Lower bounds on $\gamma(Q_{m \times n})$ are given. In particular, if $m \leq n$ then $\gamma(Q_{m \times n}) \geq \min \{ m,\lceil (m+n-2)/4 \rceil \}$. Two types of dominating sets (orthodox covers and centrally strong sets) are developed; each type is shown to give good upper bounds of $\gamma(Q_{m \times n})$ in several cases. Three questions are posed: whether monotonicity of $\gamma(Q_{m \times n})$ holds (other than from $(m, n) = (8, 11)$ to $(9, 11)$), whether $\gamma(Q_{m \times n}) = (m+n-2)/4$ occurs with $m \leq n < 3m+2$ (other than for $(m, n) = (3, 3)$ and $(11, 11)$), and whether the lower bound given above can be improved. A set of squares is independent if no two of its squares are adjacent. The minimum size of an independent dominating set of $Q_{m \times n}$ is the independent domination number, denoted by $i(Q_{m \times n})$. Values of $i(Q_{m \times n}), \, 4 \leq m \leq n \leq 18, \,$ are given here, in each case with some minimum dominating sets. In these ranges for $m$ and $n$, monotonicity fails twice: $i(Q_{8\times 11}) = 6 > 5 = i(Q_{9 \times 11}) = i(Q_{10 \times 11}) = i(Q_{11 \times 11})$, and $i(Q_{11 \times 18}) = 9 > 8 = i(Q_{12\times 18})$.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Jun Tarui

International audience A family $\mathcal{P} = \{\pi_1, \ldots , \pi_q\}$ of permutations of $[n]=\{1,\ldots,n\}$ is $\textit{completely}$ $k$-$\textit{scrambling}$ [Spencer, 1972; Füredi, 1996] if for any distinct $k$ points $x_1,\ldots,x_k \in [n]$, permutations $\pi_i$'s in $\mathcal{P}$ produce all $k!$ possible orders on $\pi_i (x_1),\ldots, \pi_i(x_k)$. Let $N^{\ast}(n,k)$ be the minimum size of such a family. This paper focuses on the case $k=3$. By a simple explicit construction, we show the following upper bound, which we express together with the lower bound due to Füredi for comparison. $\frac{2}{ \log _2e} \log_2 n \leq N^{\ast}(n,3) \leq 2\log_2n + (1+o(1)) \log_2 \log _2n$. We also prove the existence of $\lim_{n \to \infty} N^{\ast}(n,3) / \log_2 n = c_3$. Determining the value $c_3$ and proving the existence of $\lim_{n \to \infty} N^{\ast}(n,k) / \log_2 n = c_k$ for $k \geq 4$ remain open.


Sign in / Sign up

Export Citation Format

Share Document