Tillering Characteristics of Multi-tiller Maize and Influence of Plant Density and Sowing Date

2013 ◽  
Vol 38 (2) ◽  
pp. 322-332 ◽  
Author(s):  
Ru-Fang WANG ◽  
Ji-Wang ZHANG ◽  
Peng LÜ ◽  
Shu-Ting DONG ◽  
Peng LIU ◽  
...  
Keyword(s):  
2003 ◽  
Vol 51 (1) ◽  
pp. 25-35 ◽  
Author(s):  
A. Y. Allam ◽  
G. R. El-Nagar ◽  
A. H. Galal

This investigation was carried out at the Experimental Farm of Assiut University during the summers of 2000 and 2001 to study the responses of two sunflower hybrids (Vidoc and Euroflora) to planting dates (May 1st, June 1st and July 1st) and planting densities (55,533, 83,300 and 166,600 plants/ha). The results indicated that the two varieties differed highly significantly in all studied traits except oil yield/ha. The highest seed yield (3.64 t/ha) was obtained with the variety Vidoc. In addition, the results revealed that the planting date exerted a highly significant influence on all vegetative growth traits along with yield and its components. Increasing plant density increased the seed and oil yield/ha. By contrast, the stem diameter, head diameter, 100-seed weight and seed yield/plant decreased with increasing plant density. The interaction between varieties and plant density had a highly significant effect on head diameter. The greatest head diameter (20.06 cm) was recorded for the variety Vidoc planted at lower density. Concerning the interaction between planting density and planting date, the highest seed yield (4.47 t/ha) was obtained from dense plants at the early sowing date, and the highest oil % (45.32) at the late planting date and the lowest plant density. The second order interaction exerted a highly significant influence on stem and head diameter in addition to seed yield/plant, where the highest value (78.13 g/plant) was obtained with the variety Vidoc planted on May 1st at the lowest plant density.


2016 ◽  
Vol 155 (5) ◽  
pp. 703-724 ◽  
Author(s):  
A. MULUNEH ◽  
L. STROOSNIJDER ◽  
S. KEESSTRA ◽  
B. BIAZIN

SUMMARYStudies on climate impacts and related adaptation strategies are becoming increasingly important to counteract the negative impacts of climate change. In Ethiopia, climate change is likely to affect crop yields negatively and therefore food security. However, quantitative evidence is lacking about the ability of farm-level adaptation options to offset the negative impacts of climate change and to improve food security. The MarkSim Global Climate Model weather generator was used to generate projected daily rainfall and temperature data originally taken from the ECHAM5 general circulation model and ensemble mean of six models under high (A2) and low (B1) emission scenarios. The FAO AquaCrop model was validated and subsequently used to predict maize yields and explore three adaptation options: supplemental irrigation (SI), increasing plant density and changing sowing date. The maximum level of maize yield was obtained when the second level of supplemental irrigation (SI2), which is the application of irrigation water when the soil water depletion reached 75% of the total available water in the root zone, is combined with 30 000 plants/ha plant density. It was also found that SI has a marginal effect in good rainfall years but using 94–111 mm of SI can avoid total crop failure in drought years. Hence, SI is a promising option to bridge dry spells and improve food security in the Rift Valley dry lands of Ethiopia. Expected longer dry spells during the shorter rainy season (Belg) in the future are likely to further reduce maize yield. This predicted lower maize production is only partly compensated by the expected increase in CO2 concentration. However, shifting the sowing period of maize from the current Belg season (mostly April or May) to the first month of the longer rainy season (Kiremt) (June) can offset the predicted yield reduction. In general, the present study showed that climate change will occur and, without adaptation, will have negative effects. Use of SI and shifting sowing dates are viable options for adapting to the changes, stabilizing or increasing yield and therefore improving food security for the future.


2004 ◽  
Vol 3 (3) ◽  
pp. 215-218 ◽  
Author(s):  
Tahsin Sogut ◽  
Halis Arioglu

2005 ◽  
Vol 53 (1) ◽  
pp. 59-70 ◽  
Author(s):  
M. Sárvári

In order to enhance the adaptability and yield stability of maize, the effect of nutrient supply and plant density on yield was studied on a calcareous chernozem soil in Debrecen, while the relationship between sowing date and the grain moisture content at harvest was investigated on a typical meadow soil in Hajdúböszörmény. In the plant density experiment, the plant densities applied were 45, 60, 75 and 90 thousand plants/ha. The optimal fertilizer rates for the maize hybrids were: N 40-120, P2O5 25-75, K2O 30-90 kg ha-1. The application of NPK fertilizers in a wet year increased the yield by 40-50%. Hybrids with good chilling resistance at germination can be sown as early as 10 April, when the soil temperature reaches 8-10°C. There was a significant correlation between sowing date and the grain moisture content at harvest. When hybrids with good chilling resistance at germination were sown early, the grain moisture content at harvest was reduced by 5-10%. A plant density higher than the optimum reduces yield and yield stability. The optimal plant densities determined in the experiment were 60, 75 and 90 thousand plants/ha for two, three and one hybrid, respectively.


1986 ◽  
Vol 37 (5) ◽  
pp. 513 ◽  
Author(s):  
R Ferraris ◽  
DA Charles-Edwards

Well-watered crops of sweet sorghum (cv. Wray) and forage sorghum (cv. Silk) were grown in south-eastern Queensland. Treatments consisted of four sowing dates, two intra-row spacings and harvests taken at six physiological growth stages from the third ligule to 3 weeks after grain maturity. Plant density effects on the concentration of sugars and nitrogen were slight, and changes in yields of these components were a function of density effects on dry matter yields. At any growth stage, the concentration of sugars in both cultivars was decreased with delay in sowing date. The delay in sowing date led to an increased nitrogen concentration in cv. Wray, but in cv. Silk the nitrogen concentration was highest in early and late sowings. At maturity, the concentration of sugars in cv. Wray averaged 40'70, 10 times the level in cv. Silk. In both cultivars, accumulation was a near linear function of either time or radiation sum. The partitioning of carbohydrate differed little between cultivars but altered with their ontogeny. The efficiency of light use for sugars production was greater in cv. Wray and altered with ontogeny. In contrast, concentration of nitrogen was similar for both cultivars and decreased curvilinearly with time or degree days. The partitioning of nitrogen altered with ontogeny and the amount partitioned to leaf material was greater in cv. Silk pre-anthesis but was less post-anthesis. Yield of stem sugars in cv. Wray exceeded 10 t ha-1 when the crops were sown early in the season, but was only 3 t ha-1 with late-sown crops.


Author(s):  
Agnieszka Pszczółkowska ◽  
Agnieszka Pszczółkowska ◽  
Adam Okorski ◽  
Andrzej Kotecki ◽  
Marta Gas ◽  
...  

2007 ◽  
Vol 145 (4) ◽  
pp. 313-327 ◽  
Author(s):  
L. C. SIM ◽  
R. J. FROUD-WILLIAMS ◽  
M. J. GOODING

SUMMARYFour experiments conducted over three seasons (2002–05) at the Crops Research Unit, University of Reading, investigated effects of canopy management of autumn sown oilseed rape (Brassica napus L. ssp. oleifera var. biennis (DC.) Metzg.) on competition with grass weeds. Emphasis was placed on the effect of the crop on the weeds.Rape canopy size was manipulated using sowing date, seed rate and the application of autumn fertilizer. Lolium multiflorum Lam., L.×boucheanum Kunth and Alopecurus myosuroides Huds. were sown as indicative grass weeds.The effects of sowing date, seed rate and autumn nitrogen on crop competitive ability were correlated with rape biomass and fractional interception of photosynthetically active radiation (PAR) by the rape floral layer, to the extent that by spring there was good evidence of crop: weed replacement.An increase in seed rate up to the highest plant densities tested increased both rape biomass and competitiveness, e.g. in 2002/3, L. multiflorum head density was reduced from 539 to 245 heads/m2 and spikelet density from 13 170 to 5960 spikelets/m2 when rape plant density was increased from 16 to 81 plants/m2. Spikelets/head of Lolium spp. was little affected by rape seed rate, but the length of heads of A. myosuroides was reduced by 9% when plant density was increased from 29–51 plants/m2.Autumn nitrogen increased rape biomass and reduced L. multiflorum head density (415 and 336 heads/m2 without and with autumn nitrogen, respectively) and spikelet density (9990 and 8220 spikelets/m2 without and with autumn nitrogen, respectively). The number of spikelets/head was not significantly affected by autumn nitrogen.Early sowing could increase biomass and competitiveness, but poor crop establishment sometimes overrode the effect. Where crop and weed establishment was similar for both sowing dates, a 2-week delay (i.e. early September to mid-September) increased L. multiflorum head density from 226 to 633 heads/m2 and spikelet density from 5780 to 15 060 spikelets/m2.


2016 ◽  
pp. 105-110
Author(s):  
Ákos Tótin ◽  
Péter Pepó

The maize research was set up on chernozem soil at Látókép research area of the Centre for Agricultural Sciences University of Debrecen. We examined the following hybrids SY ARIOSO (FAO 300), P9486 (FAO360), DKC 4943 (FAO 410). The experience was set u pin three different plant density. These were 60, 76 and 90 thousand plant ha-1. The experience was set up in three different sawing date, early, average and late. The germination and growing dynamic measurements was measured in three hybrid, three sawing date, three plant density in four replication. well observed at the first sawing date (April 5) the soil was too cold therefore the germination was begins very slowly to be slowly increased. The second sowing time was the average (April 21) there the germination launch as soon as possible more rapid growth in the amount of heat. We experienced the most intense germination was in the case of the emergence late sowing date (May 5). Looking at the growth dynamics for the first two sawing date was side by side and almost equal to the maximum value. This is explained by the adaptive capacity of the maize to compensate for the sawing difference. For the third time, despite the delayed sawing the maize began to grow more dynamically than in previous sawing times due to the results of the initial good conditions it growth faster than halted in the second half of the season because of the high temperatures and lack of precipitation.


Sign in / Sign up

Export Citation Format

Share Document