EFFECT OF SUPPLEMENTAL VE ON MEAT QUALITY AND ANTI-OXIDANT CAPACITY OF ADULT GRASS CARP

2010 ◽  
Vol 33 (6) ◽  
pp. 1132-1139 ◽  
Author(s):  
Xiao-Qin LI ◽  
Bin HU ◽  
Xiang-Jun LENG ◽  
Jia-Le LI ◽  
Hua WEN
Keyword(s):  
2020 ◽  
Vol 11 (10) ◽  
pp. 8547-8559
Author(s):  
Hongjing Zhao ◽  
Yu Wang ◽  
Mengyao Mu ◽  
Menghao Guo ◽  
Hongxian Yu ◽  
...  

Antibiotics are used worldwide to treat diseases in humans and other animals; most of them and their secondary metabolites are discharged into the aquatic environment, posing a serious threat to human health.


2002 ◽  
Vol 52 (2) ◽  
pp. 85-90 ◽  
Author(s):  
Niels Oksbjerg ◽  
Martin Tang Sørensen ◽  
Mogens Vestergaard

Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
YY Kamrani ◽  
M Amanlou ◽  
A Yazdanyar ◽  
A AdliMoghaddam ◽  
SN Ebrahimi

1984 ◽  
Vol 51 (01) ◽  
pp. 089-092 ◽  
Author(s):  
M A Boogaerts ◽  
J Van de Broeck ◽  
H Deckmyn ◽  
C Roelant ◽  
J Vermylen ◽  
...  

SummaryThe effect of alfa-tocopherol on the cell-cell interactions at the vessel wall were studied, using an in vitro model of human umbilical vein endothelial cell cultures (HUEC). Immune triggered granulocytes (PMN) will adhere to and damage HUEC and platelets enhance this PMN mediated endothelial injury. When HUEC are cultured in the presence of vitamin E, 51Cr-leakage induced by complement stimulated PMN is significantly decreased and the enhanced cytotoxicity by platelets is completely abolished (p <0.001).The inhibition of PMN induced endothelial injury is directly correlated to a diminished adherence of PMN to vitamin E- cultured HUEC (p <0.001), which may be mediated by an increase of both basal and stimulated endogenous prostacyclin (PGI2) from alfa-tocopherol-treated HUEC (p <0.025). The vitamin E-effect is abolished by incubation of HUEC with the irreversible cyclo-oxygenase inhibitor, acetylsalicylic acid, but the addition of exogenous PGI2 could not reproduce the vitamin E-mediated effects.We conclude that vitamin E exerts a protective effect on immune triggered endothelial damage, partly by increasing the endogenous anti-oxidant potential, partly by modulating intrinsic endothelial prostaglandin production. The failure to reproduce vitamin E-protection by exogenously added PGI2 may suggest additional, not yet elucidated vitamin E-effects on endothelial metabolism.


2019 ◽  
Vol 329 (6) ◽  
pp. 13-16
Author(s):  
A.N. Betin ◽  
◽  
A.I. Frolov ◽  

Sign in / Sign up

Export Citation Format

Share Document