Leaf nitrogen resorption proficiency of seven shrubs across timberline ecotones in the Sergymla Mountains, Southeast Xizang, China

2014 ◽  
Vol 38 (12) ◽  
pp. 1325-1332 ◽  
Author(s):  
ZHANG Lin ◽  
◽  
YAN En-Rong ◽  
WEI Hai-Xia ◽  
LIU Xin-Sheng ◽  
...  
2009 ◽  
Vol 66 (6) ◽  
pp. 812-818 ◽  
Author(s):  
Guilherme Nascimento Corte ◽  
Patrícia Macchiaverni ◽  
Inácio Maria Dal Fabbro ◽  
Claudia Regina Baptista Haddad

Evergreen species of temperate regions are dominant in low-nutrient soils. This feature is attributed to more efficient mechanisms of nutrient economy. Nevertheless, the cashew (Anacardium occidentale- Anacardiaceae), a deciduous species, is native to regions in Brazil with sandy soil, whilst the annatto (Bixa orellana- Bixaceae), classified as an evergreen species native to tropical America, grows spontaneously in regions with more humid soils. Evergreens contain robust leaves that can resist adverse conditions for longer. The physical aspects of the leaves and mechanisms of nutrient economy between the two species were compared, in order to verify whether the deciduous species had more efficient mechanisms that might explain its occurrence in regions of low soil fertility. The mechanisms of nitrogen economy were also compared for the two species at available concentrations of this nutrient. The following were analysed: (i) leaf life span, (ii) physical leaf characteristics (leaf mass per area, and rupture strain), (iii) nitrogenous compounds (nitrogen, chlorophyll, and protein), (iv) nitrogen conservation mechanisms (nitrogen resorption efficiency, resorption proficiency, and use efficiency), and (v) nitrogen conservation mechanisms under different availability of this mineral. The higher values of leaf mass per area and leaf rupture strain found in A. occidentale were related to its longer leaf life span. A. occidentale showed lower concentrations of nitrogen and protein in the leaves than B. orellana. Under lower nitrogen availability, A. occidentale had higher nitrogen resorption proficiency, nitrogen use efficiency and leaf life span than B. orellana. These characteristics may contribute to the adaptation of this species to sandy soils with low nitrogen content.


2020 ◽  
Vol 133 (5) ◽  
pp. 639-648
Author(s):  
Shimpei Oikawa ◽  
Yusuke Matsui ◽  
Michio Oguro ◽  
Masanori Okanishi ◽  
Ryo Tanabe ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 420 ◽  
Author(s):  
Li Li ◽  
William Manning ◽  
Xiaoke Wang

To understand whether the process of seasonal nitrogen resorption and biomass allocation are different in CO2-enriched plants, seedlings of red maple (Acer rubrum L.) were exposed to three CO2 concentrations (800 µL L−1 CO2 treatments—A800, 600 µL L−1 CO2 treatments—A600, and 400 µL L−1 CO2 treatments—A400) in nine continuous stirred tank reactor (CSTR) chambers. Leaf mass per area, leaf area, chlorophyll index, carbon (C), nitrogen (N) contents, nitrogen resorption efficiency (NRE), and biomass allocation response were investigated. The results indicated that: (1) Significant leaf N decline was found in senescent leaves of two CO2 treatments, which led to an increase of 43.4% and 39.7% of the C/N ratio in A800 and A600, respectively. (2) Elevated CO2 induced higher NRE, with A800 and A600 showing significant increments of 50.3% and 46.2%, respectively. (3) Root biomass increased 33.1% in A800 and thus the ratio of root to shoot ratio was increased by 25.8%. In conclusion, these results showed that to support greater nutrient and water uptake and the continued response of biomass under elevated CO2, Acer rubrum partitioned more biomass to root and increased leaf N resorption efficiency.


Biology ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 51 ◽  
Author(s):  
Thomas E. Marler ◽  
Murukesan V. Krishnapillai

Plant size influences the leaf nutrient relations of many species, but no cycad species has been studied in this regard. We used the arborescent Cycas micronesica K.D. Hill to quantify leaf nutrient concentrations of trees with stems up to 5.5-m in height to determine if height influenced leaf nutrients. Green leaves were sampled in a karst, alkaline habitat in Rota and a schist, acid habitat in Yap. Additionally, senesced leaves were collected from the trees in Yap. Minerals and metals were quantified in the leaf samples and regressed onto stem height. Green leaf nitrogen, calcium, manganese, and iron decreased linearly with increased stem height. Senesced leaf carbon, iron, and copper decreased and senesced leaf nitrogen increased with stem height. Nitrogen resorption efficiency decreased with stem height. Phosphorus and potassium resorption efficiencies were not influenced by plant size, but were greater than expected based on available published information. The results indicate leaf nutrient concentrations of this cycad species are directly influenced by plant size, and illuminate the need for adding more cycad species to this research agenda. Plant size should be measured and reported in all cycad reports that include measurements of leaf behavior.


2011 ◽  
Vol 37 (6) ◽  
pp. 1039-1048 ◽  
Author(s):  
Fang-Yong WANG ◽  
Ke-Ru WANG ◽  
Shao-Kun LI ◽  
Shi-Ju GAO ◽  
Chun-Hua XIAO ◽  
...  

2014 ◽  
Vol 38 (6) ◽  
pp. 640-652 ◽  
Author(s):  
YAN Shuang ◽  
◽  
ZHANG Li ◽  
JING Yuan-Shu ◽  
HE Hong-Lin ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 739
Author(s):  
Jiale Jiang ◽  
Jie Zhu ◽  
Xue Wang ◽  
Tao Cheng ◽  
Yongchao Tian ◽  
...  

Real-time and accurate monitoring of nitrogen content in crops is crucial for precision agriculture. Proximal sensing is the most common technique for monitoring crop traits, but it is often influenced by soil background and shadow effects. However, few studies have investigated the classification of different components of crop canopy, and the performance of spectral and textural indices from different components on estimating leaf nitrogen content (LNC) of wheat remains unexplored. This study aims to investigate a new feature extracted from near-ground hyperspectral imaging data to estimate precisely the LNC of wheat. In field experiments conducted over two years, we collected hyperspectral images at different rates of nitrogen and planting densities for several varieties of wheat throughout the growing season. We used traditional methods of classification (one unsupervised and one supervised method), spectral analysis (SA), textural analysis (TA), and integrated spectral and textural analysis (S-TA) to classify the images obtained as those of soil, panicles, sunlit leaves (SL), and shadowed leaves (SHL). The results show that the S-TA can provide a reasonable compromise between accuracy and efficiency (overall accuracy = 97.8%, Kappa coefficient = 0.971, and run time = 14 min), so the comparative results from S-TA were used to generate four target objects: the whole image (WI), all leaves (AL), SL, and SHL. Then, those objects were used to determine the relationships between the LNC and three types of indices: spectral indices (SIs), textural indices (TIs), and spectral and textural indices (STIs). All AL-derived indices achieved more stable relationships with the LNC than the WI-, SL-, and SHL-derived indices, and the AL-derived STI was the best index for estimating the LNC in terms of both calibration (Rc2 = 0.78, relative root mean-squared error (RRMSEc) = 13.5%) and validation (Rv2 = 0.83, RRMSEv = 10.9%). It suggests that extracting the spectral and textural features of all leaves from near-ground hyperspectral images can precisely estimate the LNC of wheat throughout the growing season. The workflow is promising for the LNC estimation of other crops and could be helpful for precision agriculture.


Sign in / Sign up

Export Citation Format

Share Document