scholarly journals ANALYSIS AND SIMULATION OFF-GRID PV PANELS BY USING MATLAB / SIMULINK ENVIRONMENT

Author(s):  
L. M. Abdali ◽  
H. A. Issa ◽  
Q. A. Ali ◽  
V. V. Kuvshinov ◽  
E. A. Bekirov

The use of renewable energy sources and in particular solar energy has received considerable attention in recent decades. Photovoltaic (PV) energy projects are being implemented in very large numbers in many countries. Many research projects are carried out to analyze and verify the performance of PV modules. Implementing a pilot plant for a photovoltaic power system with a DC / DC converter to test system performance is not always possible due to practical limitations. The software simulation model helps to analyze the performance of PV modules, and more useful would be a general circuit model that can be used to test any commercial PV module. This paper presents a simulation of a mathematical model of a photovoltaic module that boosts a DC / AC converter and also simulates the operating modes of a solar generating system at various load characteristics. The model presented in this article can be used as a generalized PV module to analyze the performance of any commercially available PV module. In the presented work, the parameters that affect the performance of the generating system were investigated. The results were obtained for the operation of DC/AC photoelectric converters. The presented characteristics strongly depend on such parameters as solar insolation, the temperature of the working surface of the photovoltaic module, the charge-discharge time of storage batteries, etc. When one of the values ​​of these parameters changes, the operating modes of the solar power generating battery change. Changing the operating modes can lead to malfunctions of the entire operation of the system, therefore, it is necessary to control all the energy characteristics of the installation. The actions proposed in this work aimed at studying the operation of the photovoltaic system and the energy storage system, as well as the use of the necessary auxiliary devices for monitoring and controlling the parameters of the installation, are capable of achieving an increase in the efficiency of the generation of the system. The studies carried out in the course of the presented work make it possible to increase the level of knowledge on the control and management of the parameters of photovoltaic generating plants and expand the possibilities of their uninterrupted operation and increase energy production.

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2649 ◽  
Author(s):  
Jiashen Teh

The demand response and battery energy storage system (BESS) will play a key role in the future of low carbon networks, coupled with new developments of battery technology driven mainly by the integration of renewable energy sources. However, studies that investigate the impacts of BESS and its demand response on the adequacy of a power supply are lacking. Thus, a need exists to address this important gap. Hence, this paper investigates the adequacy of a generating system that is highly integrated with wind power in meeting load demand. In adequacy studies, the impacts of demand response and battery energy storage system are considered. The demand response program is applied using the peak clipping and valley filling techniques at various percentages of the peak load. Three practical strategies of the BESS operation model are described in this paper, and all their impacts on the adequacy of the generating system are evaluated. The reliability impacts of various wind penetration levels on the generating system are also explored. Finally, different charging and discharging rates and capacities of the BESS are considered when evaluating their impacts on the adequacy of the generating system.


2014 ◽  
Vol 511-512 ◽  
pp. 1099-1102
Author(s):  
Zhen Bao Sun

Recently, many countries have been pushing for a higher share of renewable energy sources, especially wind, in their generation mix. However, the intermittent and uncertain nature of wind power imposes a limit on the extent it can replace the conventional generation resources. In a high wind penetration scenario, the Battery Energy Storage System (BESS) offers a solution to the grid operation problems. The purpose of this paper is to evaluate the merits of price-based operation of BESS in a real-time market with high wind penetration using frequency-linked pricing. The authors propose a real-time market in which real-time prices are based on the grid frequency. A model for real-time price-based operation of a conventional generator and a BESS is presented. Simulations for different wind penetration scenarios are carried out on an isolated area test system. Wind speed sequence is generated using composite wind speed model. A simplified model of wind speed to power conversion is adopted to observe the impact of increase in wind power generation on the grid frequency and the real-time prices.


2018 ◽  
Vol 12 (2) ◽  
pp. 98 ◽  
Author(s):  
Jalaluddin . ◽  
Baharuddin Mire

Actual performance of photovoltaic module with solar tracking is presented. Solar radiation can be converted into electrical energy using photovoltaic (PV) modules. Performance of polycristalline silicon PV modules with and without solar tracking are investigated experimentally. The PV module with dimension 698 x 518 x 25 mm has maximum power and voltage is 45 Watt and 18 Volt respectively. Based on the experiment data, it is concluded that the performance of PV module with solar tracking increases in the morning and afternoon compared with that of fixed PV module. It increases about 18 % in the morning from 10:00 to 12:00 and in the afternoon from 13:30 to 14:00 (local time). This study also shows the daily performance characteristic of the two PV modules. Using PV module with solar tracking provides a better performance than fixed PV module. 


2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1598
Author(s):  
Dongmin Kim ◽  
Kipo Yoon ◽  
Soo Hyoung Lee ◽  
Jung-Wook Park

The energy storage system (ESS) is developing into a very important element for the stable operation of power systems. An ESS is characterized by rapid control, free charging, and discharging. Because of these characteristics, it can efficiently respond to sudden events that affect the power system and can help to resolve congested lines caused by the excessive output of distributed generators (DGs) using renewable energy sources (RESs). In order to efficiently and economically install new ESSs in the power system, the following two factors must be considered: the optimal installation placements and the optimal sizes of ESSs. Many studies have explored the optimal installation placement and the sizing of ESSs by using analytical approaches, mathematical optimization techniques, and artificial intelligence. This paper presents an algorithm to determine the optimal installation placement and sizing of ESSs for a virtual multi-slack (VMS) operation based on a power sensitivity analysis in a stand-alone microgrid. Through the proposed algorithm, the optimal installation placement can be determined by a simple calculation based on a power sensitivity matrix, and the optimal sizing of the ESS for the determined placement can be obtained at the same time. The algorithm is verified through several case studies in a stand-alone microgrid based on practical power system data. The results of the proposed algorithm show that installing ESSs in the optimal placement could improve the voltage stability of the microgrid. The sizing of the newly installed ESS was also properly determined.


2019 ◽  
Vol 137 ◽  
pp. 01007 ◽  
Author(s):  
Sebastian Lepszy

Due to the random nature of the production, the use of renewable energy sources requires the use of technologies that allow adjustment of electricity production to demand. One of the ways that enable this task is the use of energy storage systems. The article focuses on the analysis of the cost-effectiveness of energy storage from the grid. In particular, the technology was evaluated using underground hydrogen storage generated in electrolysers. Economic analyzes use historical data from the Polish energy market. The obtained results illustrate, among other things, the proportions between the main technology modules selected optimally in technical and economic terms.


Sign in / Sign up

Export Citation Format

Share Document