Formation of 3-dimensional mammalian cell aggregates in ultrasound standing waves (USW) away from a solid substratum

Author(s):  
Larisa A. Kuznetsova ◽  
Despina Bazou ◽  
Gareth O. Edwards ◽  
W. Terence Coakley
2009 ◽  
Vol 25 (3) ◽  
pp. 834-841 ◽  
Author(s):  
Larisa A. Kuznetsova ◽  
Despina Bazou ◽  
Gareth O. Edwards ◽  
W. Terence Coakley

2005 ◽  
Vol 17 (Supplement) ◽  
pp. 102-102
Author(s):  
Shinichi Asahi ◽  
Tomoaki Sameshima ◽  
Katsuko Furukawa ◽  
Takashi Ushida

1971 ◽  
Vol 65 (1) ◽  
pp. 228-232 ◽  
Author(s):  
J MOORE ◽  
A WILLIAMS ◽  
M SANDERS

Author(s):  
Robert Glaeser ◽  
Thomas Bauer ◽  
David Grano

In transmission electron microscopy, the 3-dimensional structure of an object is usually obtained in one of two ways. For objects which can be included in one specimen, as for example with elements included in freeze- dried whole mounts and examined with a high voltage microscope, stereo pairs can be obtained which exhibit the 3-D structure of the element. For objects which can not be included in one specimen, the 3-D shape is obtained by reconstruction from serial sections. However, without stereo imagery, only detail which remains constant within the thickness of the section can be used in the reconstruction; consequently, the choice is between a low resolution reconstruction using a few thick sections and a better resolution reconstruction using many thin sections, generally a tedious chore. This paper describes an approach to 3-D reconstruction which uses stereo images of serial thick sections to reconstruct an object including detail which changes within the depth of an individual thick section.


Author(s):  
C.W. Akey ◽  
M. Szalay ◽  
S.J. Edelstein

Three methods of obtaining 20 Å resolution in sectioned protein crystals have recently been described. They include tannic acid fixation, low temperature embedding and grid sectioning. To be useful for 3-dimensional reconstruction thin sections must possess suitable resolution, structural fidelity and a known contrast. Tannic acid fixation appears to satisfy the above criteria based on studies of crystals of Pseudomonas cytochrome oxidase, orthorhombic beef liver catalase and beef heart F1-ATPase. In order to develop methods with general applicability, we have concentrated our efforts on a trigonal modification of catalase which routinely demonstrated a resolution of 40 Å. The catalase system is particularly useful since a comparison with the structure recently solved with x-rays will permit evaluation of the accuracy of 3-D reconstructions of sectioned crystals.Initially, we re-evaluated the packing of trigonal catalase crystals studied by Longley. Images of the (001) plane are of particular interest since they give a projection down the 31-screw axis in space group P3121. Images obtained by the method of Longley or by tannic acid fixation are negatively contrasted since control experiments with orthorhombic catalase plates yield negatively stained specimens with conditions used for the larger trigonal crystals.


Author(s):  
Atul S. Ramani ◽  
Earle R. Ryba ◽  
Paul R. Howell

The “decagonal” phase in the Al-Co-Cu system of nominal composition Al65CO15Cu20 first discovered by He et al. is especially suitable as a topic of investigation since it has been claimed that it is thermodynamically stable and is reported to be periodic in the dimension perpendicular to the plane of quasiperiodic 10-fold symmetry. It can thus be expected that it is an important link between fully periodic and fully quasiperiodic phases. In the present paper, we report important findings of our transmission electron microscope (TEM) study that concern deviations from ideal decagonal symmetry of selected area diffraction patterns (SADPs) obtained from several “decagonal” phase crystals and also observation of a lattice of main reflections on the 10-fold and 2-fold SADPs that implies complete 3-dimensional lattice periodicity and the fundamentally incommensurate nature of the “decagonal” phase. We also present diffraction evidence for a new transition phase that can be classified as being one-dimensionally quasiperiodic if the lattice of main reflections is ignored.


Author(s):  
Glenn M. Cohen ◽  
Radharaman Ray

Retinal,cell aggregates develop in culture in a pattern similar to the in ovo retina, forming neurites first and then synapses. In the present study, we continuously exposed chick retinal cell aggregates to a high concentration (1 mM) of carbamylcholine (carbachol), an acetylcholine (ACh) analog that resists hydrolysis by acetylcholinesterase (AChE). This situation is similar to organophosphorus anticholinesterase poisoning in which the ACh level is elevated at synaptic junctions due to inhibition of AChE, Our objective was to determine whether continuous carbachol exposure either damaged cholino- ceptive neurites, cell bodies, and synaptic elements of the aggregates or influenced (hastened or retarded) their development.The retinal tissue was isolated aseptically from 11 day embryonic White Leghorn chicks and then enzymatically (trypsin) and mechanically (trituration) dissociated into single cells. After washing the cells by repeated suspension and low (about 200 x G) centrifugation twice, aggregate cell cultures (about l0 cells/culture) were initiated in 1.5 ml medium (BME, GIBCO) in 35 mm sterile culture dishes and maintained as experimental (containing 10-3 M carbachol) and control specimens.


Author(s):  
A. Engel ◽  
A. Holzenburg ◽  
K. Stauffer ◽  
J. Rosenbusch ◽  
U. Aebi

Reconstitution of solubilized and purified membrane proteins in the presence of phospholipids into vesicles allows their functions to be studied by simple bulk measurements (e.g. diffusion of differently sized solutes) or by conductance measurements after transformation into planar membranes. On the other hand, reconstitution into regular protein-lipid arrays, usually forming at a specific lipid-to-protein ratio, provides the basis for determining the 3-dimensional structure of membrane proteins employing the tools of electron crystallography.To refine reconstitution conditions for reproducibly inducing formation of large and highly ordered protein-lipid membranes that are suitable for both electron crystallography and patch clamping experiments aimed at their functional characterization, we built a flow-dialysis device that allows precise control of temperature and flow-rate (Fig. 1). The flow rate is generated by a peristaltic pump and can be adjusted from 1 to 500 ml/h. The dialysis buffer is brought to a preselected temperature during its travel through a meandering path before it enters the dialysis reservoir. A Z-80 based computer controls a Peltier element allowing the temperature profile to be programmed as function of time.


Author(s):  
D.P. Bazett-Jones ◽  
F.P. Ottensmeyer

It has been shown for some time that it is possible to obtain images of small unstained proteins, with a resolution of approximately 5Å using dark field electron microscopy (1,2). Applying this technique, we have observed a uniformity in size and shape of the 2-dimensional images of pure specimens of fish protamines (salmon, herring (clupeine, Y-l) and rainbow trout (Salmo irideus)). On the basis of these images, a model for the 3-dimensional structure of the fish protamines has been proposed (2).The known amino acid sequences of fish protamines show stretches of positively charged arginines, separated by regions of neutral amino acids (3). The proposed model for protamine structure (2) consists of an irregular, right-handed helix with the segments of adjacent arginines forming the loops of the coil.


Sign in / Sign up

Export Citation Format

Share Document