Preparation and in vitro Evaluation of Bioadhesive Microparticulate System

Author(s):  
Nagda C. D. ◽  
Chotai N. P. ◽  
Patel S. B. ◽  
Soni T. J ◽  
Patel U. L

Aceclofenac (ACE) is NSAIDs of a phenyl acetic acid class. It is indicated in arthritis and osteoarthritis, rheumatoid arthritis, ankylosing spondylitis. It has short elimination half life of 4 hours. The objective of the study is to design, characterize and evaluate bioadhesive microspheres of ACE employing carbopol (CP) as bioadhesive polymer. Bioadhesive microspheres of ACE were prepared by solvent evaporation method. The prepared microspheres were free flowing and spherical in shape and characterized for drug loading, mucoadhesion test, infrared spectroscopy (IR), differential scanning colorimetry (DSC) and scanning electron microscopy (SEM). The in-vitro release studies were performed using pH 6.8 phosphate buffer. The drug loaded microspheres in a ratio of 1:5 showed 47% of drug entrapment; percentage mucoadhesion was 81% and 89% release in 10 h. The infrared spectra and DSC showed stable character of aceclofenac in the drug loaded microspheres and revealed the absence of drug-polymer interactions. SEM studies showed that the microspheres are spherical and porous in nature. The in vitro release profiles from microspheres of different polymer-drug ratios followed Higuchi model.

2021 ◽  
Vol 7 (2) ◽  
pp. 672-675
Author(s):  
Katharina Wulf ◽  
Stefan Raggl ◽  
Thomas Eickner ◽  
Gerrit Paasche ◽  
Niels Grabow

Abstract Sterilization processes ensure sterility of drug delivery systems, but may negatively affect the properties of biomaterials and incorporated drugs by changing their physical, chemical, mechanical properties and drug release behaviour. Therefore, it is important to investigate their influence. In this study, the influence of ethylene oxide (EtO) sterilization on the drug loading and release behaviour of incorporated Diclofenac (DCF) in a Poly-L-lactide (PLLA) coating and Dexamethasone (DMS) in the silicone carrier is presented. Silicone samples containing DMS were coated with PLLA containing DCF varying in layer thickness (5, 10, and 20 μm). Half of the samples underwent EtO sterilization, the other half was not sterilized. All un-/sterilized sample surfaces were in view of the morphology and hydrophilicity examined. Furthermore, in vitro release studies of DMS and DCF were conducted. The sterilized sample surfaces showed no morphological and hydrophilicity changes. The DCF and DMS loadings were similar for the sterile and untreated samples. This also applied to the in vitro DMS release profiles apart from the end of the studies where slight differences were evident. The results indicate that both drugs loaded in the polymer coating and the silicone were not impaired by the sterilization process. Thus, EtO sterilization appears suitable for DMS containing silicone and DCF incorporated PLLA coatings as a dual drug delivery system.


2012 ◽  
Vol 602-604 ◽  
pp. 231-234
Author(s):  
Min Peng Zhu ◽  
Su Hong Li

Epichlorohydrin crosslinked starch microspheres (ECMs) were synthesized with soluble starch as a raw material and epichlorohydrin as a crosslinker. The characteristics of ECMs were investigated by Scanning Electron Microscopy (SEM) and Fourier Transform InfraRed spectroscopy (FT-IR).The drug loading and in vitro release properties of ECMs were studied using arginine as a model drug. The results indicate that ECMs have a spherical morphology with average diameter about 7μm. The drug loading studies show that after absorption for 1.5 h, the largest amount of drug (drug loading 31mg/g) is loaded when the quantity ratio of ECMs to arginine is 2. In-vitro release studies indicate that the ECMs are effective in controlled releasing arginine over an extended period of about 25 h.


2013 ◽  
Vol 2 (12) ◽  
pp. 196-201 ◽  
Author(s):  
Balagani Pavan Kumar ◽  
Irisappan Sarath Chandiran ◽  
Korlakunta Narasimha Jayaveera

The objective of the present investigation was to formulate and evaluate microencapsulated Glibenclamide produced by the emulsion – solvent evaporation method. Microparticles were prepared using Eudragit RLPO by emulsion solvent evaporation method and characterized for their micromeritic properties, encapsulation efficiency, particle size, drug loading, FTIR, DSC, SEM analysis. In vitro release studies were performed in phosphate buffer (pH 7.4). Stability studies were conducted as per ICH guidelines. The resulting microparticles obtained by solvent evaporation method were free flowing in nature. The mean particle size of microparticles ranges from 134.49 – 179.72 µm and encapsulation efficiency ranges from 92.30-98.32%. The infrared spectra and differential scanning calorimetry thermographs confirmed the stable character of Glibenclamide in the drug-loaded microparticles. Scanning electron microscopy revealed that the microparticles were spherical in nature. In vitro release studies revealed that the drug release was sustained up to 12 hrs. The release kinetics of Glibenclamide from optimized formulation followed zero-order and peppas mechanism. The mechanism of drug release from the microparticles was found to be non-Fickian type. Eudragit RLPO microparticles containing Glibenclamide could be prepared successfully by using an emulsion solvent evaporation technique, which will not only sustain the release of drug but also manage complicacy of the diabetes in a better manner.DOI: http://dx.doi.org/10.3329/icpj.v2i12.17016 International Current Pharmaceutical Journal, November 2013, 2(12): 196-201


2020 ◽  
pp. 1-9
Author(s):  
Yunhong Wang ◽  
Rong Hu ◽  
Yanlei Guo ◽  
Weihan Qin ◽  
Xiaomei Zhang ◽  
...  

OBJECTIVE: In this study we explore the method to prepare tanshinone self-microemulsifying sustained-release microcapsules using tanshinone self-microemulsion as the core material, and chitosan and alginate as capsule materials. METHODS: The optimal preparation technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules was determined by using the orthogonal design experiment and single-factor analysis. The drug loading and entrapment rate were used as evaluation indexes to assess the quality of the drug, and the in vitro release rate was used to evaluate the drug release performance. RESULTS: The best technology of chitosan-alginate tanshinone self-microemulsifying sustained-release microcapsules is as follows: the concentration of alginate is 1.5%, the ratio of tanshinone self-microemulsion volume to alginate volume to chitosan mass is 1:1:0.5 (ml: ml: g), and the best concentration of calcium chloride is 2.0%. To prepare the microcapsules using this technology, the drug loading will be 0.046%, the entrapment rate will be 80.23%, and the 24-hour in vitro cumulative release rate will be 97.4%. CONCLUSION: The release of the microcapsules conforms to the Higuchi equation and the first-order drug release model and has a good sustained-release performance.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Charu Bharti ◽  
Upendra Nagaich ◽  
Jaya Pandey ◽  
Suman Jain ◽  
Neha Jain

Abstract Background The current investigation is focused on the development and characterization of Eudragit S100 coated nitazoxanide-loaded microbeads as colon-targeted system utilizing central composite design (CCD) and desirability function. The study initiated with the selection of a BCS class II drug nitazoxanide and its preformulation screening with excipients, selection of polymer and identification of concentration for CCD, selection of optimized formulation based on desirability function, and in vitro release studies in simulated gastric and colonic media and stability studies. A two-factor, three-level CCD was employed with two independent variables, i.e. X1 (chitosan % w/v) and X2 (sodium tripolyphosphate % w/v), and three dependent variables, i.e. Y1 (particle size in micrometres), Y2 (percentage yield) and Y3 (percent entrapment efficiency), were chosen. Additionally, surface morphology, mucoadhesion and in vitro drug release studies were also conducted. Result Chitosan concentration showing maximum entrapment and optimum particle size was selected to formulate chitosan beads. The polynomial equation and model graphs obtained from the Design-Expert were utilized to examine the effect of independent variables on responses. The effect of formulation composition was found to be significant (p ˂ 0.05). Based on the desirability function, the optimized formulation was found to have 910.14 μm ± 1.03 particle size, 91.84% ± 0.64 percentage yield and 84.75% ± 0.38 entrapment efficiency with a desirability of 0.961. Furthermore, the formulations were characterized for in vitro drug release in simulated colonic media (2% rat caecal content) and have shown a sustained release of ∼ 92% up to 24 h as compared to in vitro release in simulated gastric fluid. Conclusion The possibility of formulation in enhancing percentage yield and entrapment efficiency of nitazoxanide and the utilization of CCD helps to effectively integrate nitazoxanide microbeads into a potential pharmaceutical dosage form for sustained release.


2017 ◽  
Vol 9 (3-4) ◽  
Author(s):  
Asmaa S. El-Houssiny ◽  
Azza A. Ward ◽  
Dina M. Mostafa ◽  
Salwa L. Abd-El-Messieh ◽  
Kamal N. Abdel-Nour ◽  
...  

AbstractGlucosamine sulfate (GS) has been used orally for the treatment of osteoarthritis (OA). However, it may be susceptible to the liver first pass phenomenon, which greatly affects its bioavailability, in addition to its side effects on the gastrointestinal tract. Alginate nanoparticles (Alg NPs) were investigated as a new drug carrier for transdermal delivery of GS to improve its effectiveness and reduce side effects. GS-Alg NPs were characterized by encapsulation efficiency, NP yield, particle size and surface charge properties. The in vitro release studies of GS and the ex vivo permeability through rat skin were determined using a UV-Vis spectrophotometer. GS-Alg NPs are within the nanometer range of size. High negative surface charge values are obtained and indicate the high suspension stability of the prepared formulation. The in vitro release studies showed that GS is released from Alg NPs in a sustained and prolonged manner. The ex vivo permeability of GS through rat skin is enhanced significantly after encapsulation in the negatively charged Alg NPs. We successfully reported a highly stable nanoparticlulate system using Alg NPs that permits the encapsulation of GS for topical administration, overcoming the disadvantages of oral administration.


2008 ◽  
Vol 43 (3) ◽  
pp. 464-470 ◽  
Author(s):  
Gladys E. Granero ◽  
Marcos M. Maitre ◽  
Claudia Garnero ◽  
Marcela R. Longhi

1970 ◽  
Vol 8 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Mohammad Nezab Uddin ◽  
Ishtiaq Ahmed ◽  
Monzurul Amin Roni ◽  
Muhammad Rashedul Islam ◽  
Mohammad Habibur Rahman ◽  
...  

The objective of this study was to design oral sustained release matrix tablets of Ranolazine usinghydroxypropyl methylcellulose (HPMC) as the retardant polymer and to study the effect of formulation factors suchas polymer proportion and polymer viscosity on the release of drug. In vitro release studies were performed usingUSP type II apparatus (paddle method) in 900 mL of 0.1N HCl at 100 rpm for 12 hours. The release kinetics wasanalyzed using the zero-order, first order, Higuchi and Korsmeyer-Peppas equations to explore and explain themechanism of drug release from the matrix tablets. In vitro release studies revealed that the release rate decreasedwith increase in polymer proportion and viscosity grade. Mathematical analysis of the release kinetics indicated thatthe nature of drug release from the matrix tablets was dependent on drug diffusion and polymer relaxation andtherefore followed non-Fickian or anomalous release. The developed controlled release matrix tablets of Ranolazineprepared with high viscosity HPMC extended release up to 12 hours.Key words: Ranolazine; Sustained release; Methocel E50 Premium LV; Methocel K100LV CR; Methocel K4M CR;Methocel K15M CR.DOI: 10.3329/dujps.v8i1.5333Dhaka Univ. J. Pharm. Sci. 8(1): 31-38, 2009 (June)


Sign in / Sign up

Export Citation Format

Share Document