Valsartan Loaded Solid Lipid Nanoparticles: Development, Characterization, and In vitro and Ex vivo Evaluation

Author(s):  
Krutika K Sawant ◽  
B Parmar ◽  
S A Mandal ◽  
K C Petkar ◽  
L D Patel

Valsartan is an antihypertensive drug with poor oral bioavailability ranging from 10-35% because of poor solubility, dissolution and most importantly, extensive first pass hepatic metabolism. The present study deals with the development and characterization of Valsartan-loaded solid lipid nanoparticles (VSLNs) to enhance the solubility, bypass the first pass hepatic metabolism, and enhance the lymphatic absorption leading to improved bioavailability. VSLNs were developed using glyceryl behenate (Compritol 888 ATO®) as the lipid and Poloxamer 407 (Pluronic F 127) as the surfactant by the solvent injection method. VSLNs were characterized for mean particle Size (MPS), zeta potential, percentage drug entrapment (PDE), DSC Scans, XRD and TEM analysis. In vitro drug release studies were performed in 0.067 M phosphate buffer of pH 6.8 using dialysis diffusion bag method. Ex vivo drug release studies were also performed for both VSLNs and valsartan suspension in stomach and intestine. The optimized formulation of having the 80 mg lipid, 10 mg drug and 250 mg surfactant was found to have particle size distribution of 142.5 ± 1.859 nm, zeta potential of – 14.3 ± 0.384 mV, and 84.59 ± 0.328% drug entrapment. Based on these results, it is concluded that SLNs show promise for improving the oral bioavailability of valsartan. 

Author(s):  
Suriyakala Perumal Chandran ◽  
Kannikaparameswari Nachimuthu

Objective: Colorectal cancer is one of the most commonly diagnosed cancer and also most common gastrointestinal malignancy with high prevalence rate in the younger population. Usually, cancer cells are surrounded by a fibrin coat which is resistant to fibrinolytic degradation. This fibrin coat is act as self-protective against natural killing mechanism. The main objective was to prepare papain-loaded solid lipid nanoparticles (P-SLN) by melt dispersion-ultrasonication method and investigated the cytotoxic efficacy against colorectal adenocarcinoma (human colorectal adenocarcinoma [HCT 15]) cells.Methods: Optimized polymer ratio was characterized by differential scanning calorimetry, Fourier-transform infrared, X-ray diffraction, scanning electron microscopy, entrapment efficiency, particle size and zeta potential analysis, in vitro drug release, and in vitro cytotoxicity studies on HCT-15 colorectal adenocarcinoma cells.Results: The results showed that the particle size, morphological character and zeta potential value of optimized batch P-SLN were 265 nm, spherical and −26.5 Mv, respectively. The in vitro drug profile of P-SLN exhibited that it produced sustain drug release, and the cell viability of HCT-15 against P-SLN shown better efficacy than pure papain enzyme.Conclusion: P-SLNs were successfully prepared and investigated the in vitro drug release and in vitro cell viability against HCT-15 cell line.


Author(s):  
REMYA P. N. ◽  
DAMODHARAN N.

Objective: The aim of the present study is to develop solid lipid nanoparticles (SLNs) of Nimodipine using hot homogenization followed by ultrasonication technique and to improve the dissolution characteristics of the drug. Methods: The Nimodipine-loaded SLN was prepared using palmitic acid and stearic acid as a lipid matrix and Tween-80 as an emulsifier by a hot homogenization and ultra-sonication method. The physicochemical characteristics of SLN were investigated for entrapment efficiency, zeta potential, in vitro drug release, particle size analysis, Fourier transform infrared studies, scanning electron microscopy, and stability studies. Results: The mean particle size, PDI, Zeta potential and entrapment efficiency of optimized Nimodipine SLN formulation of stearic acid was found to be 119.54 nm, 0.165,-17.60mV, 85% and for palmitic acid was found to be 132.54 nm, 0.155,-17.0mV, 81% respectively. In vitro drug release studies indicated that after an initial burst release, SLN could provide prolonged release of Nimodipine. The selected SLNs have shown good stability for a period of 180 d. Conclusion: SLN formulations showed the best results in EE as well as in vitro drug release and therefore, these results indicate that SLN might be a promising delivery system to enhance the release of Nimodipine.


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


Author(s):  
M. Yasmin Begum ◽  
Prathyusha Reddy Gudipati

Objective: The aim of present work was to formulate and evaluate Dasatinib (DST) loaded solid lipid nanoparticles (SLNs) as a potential anticancer drug delivery system by enhancing its solubility.Methods: SLNs consist of a solid lipid matrix where the drug was incorporated. Surfactants of GRAS grade were used to avoid aggregation and to stabilize the SLNs. DST-SLNs formulations of varying concentrations were prepared by high speed homogenization technique and evaluated for drug excipients compatibility study, poly-dispersity index, particle size analysis, surface morphology, zeta potential and drug release features.Results: It was observed that DST-SLNs with optimum quantities of poloxomer: lecithin ratio showed 88.06% drug release in 6h with good entrapment efficiency of 76.9±0.84 %. Particle size, Poly dispersity index, zeta potential and drug entrapment efficiency for the optimized formulation was found to be optimum. Stability studies revealed that the entrapment efficiency of the SLN dispersion stored in 4 °C was stable.Conclusion: Thus, it can be concluded that formulations of DST loaded SLNs are suitable carriers for improving the solubility and dissolution related problems. 


2019 ◽  
Vol 7 (5) ◽  
pp. 389-403 ◽  
Author(s):  
Ritika Kondel ◽  
Nusrat Shafiq ◽  
Indu P. Kaur ◽  
Mini P. Singh ◽  
Avaneesh K. Pandey ◽  
...  

Background: Acyclovir use is limited by a high frequency of administration of five times a day and low bioavailability. This leads to poor patient compliance. Objectives: To overcome the problem of frequent dosing, we used nanotechnology platform to evaluate the proof of concept of substituting multiple daily doses of acyclovir with a single dose. Methods: Acyclovir was formulated as solid lipid nanoparticles (SLN). The nanoparticles were characterized for particle size, surface charge and morphology and in vitro drug release. The pharmacokinetic and pharmacodynamic of SLN acyclovir were compared with conventional acyclovir in a mouse model. Results: SLN showed drug loading of 90.22% with 67.44% encapsulation efficiency. Particle size was found to be of 131 ± 41.41 nm. In vitro drug release showed 100% release in SIF in 7 days. AUC0-∞ (119.43 ± 28.74 μg/ml h), AUMC0-∞ (14469 ± 4261.16 μg/ml h) and MRT (120.10 ± 9.21 h) were significantly higher for ACV SLN as compared to ACV AUC0-∞ (12.22 ± 2.47 μg/ml h), AUMC0-∞ (28.78 ± 30.16 μg/ml h) and MRT (2.07 ± 1.77 h), respectively (p<0.05). In mouse model, a single dose of ACV SLN was found to be equivalent to ACV administered as 400mg TID for 5 days in respect to lesion score and time of healing. Conclusion: The proof of concept of sustained-release acyclovir enabling administration as a single dose was thus demonstrated.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Navneet Kumar ◽  
Rohan Aggarwal ◽  
Meenakshi K. Chauhan

Abstract Background Majorly, the reason for the permanent loss of vision is glaucoma. But the currently available common treatment methodologies such as eye drops have various disadvantages like patient incompliance due to repeated administration and poor (1–5%) bioavailability leading to poor efficiency. The objective of this research was to formulate Eudragit-based nanoparticles of levobunolol incorporated into a contact lens to obtain sustained ocular delivery of levobunolol at the therapeutics level. Eudragit nanoparticles of levobunolol were formulated by nanoprecipitation methodology utilizing different ratios of Eudragit S100 and polyvinyl alcohol. The prepared nanoparticles were evaluated and optimized by efficiency of entrapment, particle size, morphology of surface and zeta potential. The optimized nanoparticles were then entrapped into the matrix of the contact lens by the soaking method which were then characterized and compared for optical clarity study, equilibrium swelling study, shelf life and in vitro drug release in simulated tear fluid followed by ex vivo transcorneal permeation study. Results Formulation F3 was obtained as optimized nanoparticle formulation with 102.61 nm ± 3.92 of particle size, − 22.2 mV ± 2.76 of zeta potential and 86.995% ± 1.902 of efficiency of entrapment. The equilibrium swelling index and transmittance of nanoparticle incorporated into contact lenses showed better results when compared to drug solution-loaded lenses. In vitro release indicated more sustained drug profiles (84.33% ± 0.34 of drug release over a period of 12 days) as compared to drug solution-loaded lenses (89.282% ± 0.900 of drug release over a period of 3 days). Ex vivo transcorneal permeation studies showed more permeation (6.75% ± 0.170) through contact lenses as compared to marketed eye drops (3.03% ± 0.088). Conclusion This research demonstrates the remarkable results of drug-laden contact lenses to serve as a great medium for the continued delivery of ocular drugs without affecting the physical and optical characteristics of the lens content.


Author(s):  
Kishan V ◽  
Suvarna G ◽  
Narender D

Rosuvastatin calcium (RC), is a hypolipidemic drug, and has poor oral bioavailability of about 20% due to first-pass effect. For improving the oral bioavailability of RC, solid lipid nanoparticles (SLNs) were developed using triglycerides (tristearin, tripalmitin, and trimyristin). Hot homogenization followed by ultrasonication method was used to prepare RC-SLNs. The prepared SLNs were characterized for particle size, PDI, zeta potential (ZP), entrapment efficiency (EE) and drug content. In vitro release studies were performed in 0.1N HCl and pH 6.8 phosphate buffer of by open tube method. Physical stability the SLNs was observed at refrigerated temperature and room temperature for 60 days. Pharmacokinetics of RC- SLNs after oral administration, in male Wistar rats was studied. SLNs prepared with tristearin (Dyanasan-118) having size of 207.3 ± 8.52 nm, PDI of 0.344 ± 0.084, ZP of – 20.9 ± 4.88 mV with 97.06 ± 0.210 % EE were optimized. Differential scanning calorimetric (DSC) study revealed that no interaction between drug and lipid. In vitro release studies showed that more cumulative release of RC in     pH 6.8 phosphate buffer than in 0.1NHCl during 24 hours. The lyophilized SLN formulation was used in knowing morphology of SLNs and was found to have spherical shape with increased polydispersity by Scanning electron microscopy. Pharmacokinetic studies showed the relative oral bioavailability of SLNs was 2.2 fold when compared to that of a suspension (p<0.001). Taken together, the results are indicative of SLNs as lipid based carriers for improving the oral bioavailability of this drug by minimizing first pass metabolism.


Author(s):  
RAJKUMAR ALAND ◽  
GANESAN M ◽  
RAJESWARA RAO P

Objective: Psoriasis is an unswervingly recurring, inflammatory, autoimmune disorder of the skin, disturbing about 2–5% of the world population. The main objective for this investigation is to develop and optimize the solid lipid nanoparticles (SLN) formulation of tazarotene for effective drug delivery. Methods: Tazarotene SLNs were fabricated by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency (EE). In view of the outcomes from the examinations of the responses acquired from Taguchi design, three diverse independent variables including sonication time (s), lipid to drug ratio (w/w), and surfactant concentration (%) were carefully chosen for further investigation utilizing central composite design. The lipid dynasan-116, surfactant poloxamer-188, and cosurfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, drug EE, zeta potential, in vitro drug release, and stability. Results: The prepared nanoformulations were evaluated for different parameters and found to be in an acceptable range. In vitro drug release of optimized SLN formulation (F1) was found to be 98.12±1.52%, whereas pure drug release was 42.12 after 60 min, and the major mechanism of drug release follows zero-order kinetics release data for optimized formulation (F1) with non-Fickian (anomalous) with a strong correlation coefficient (R2=0.98598) of Korsmeyer-Peppas model. Transmission electron microscopy analysis has demonstrated the presence of individual nanoparticles in spherical shape, and the results were also compatible with particle size measurements. The drug content of tazarotene gel formulation was found to 98.96±0.021%, and the viscosity of gel formulation at 5 rpm was found to be 5.98×103±0.34×103 cp. The release rate (flux) of tazarotene across the membrane and expunged skin diverges pointedly, which specifies the barrier nature of skin. The flux value for SLN based gel formulation (193.454±4.324 μg/cm2/h) was found to be higher than that for marketed gel (116.345±2.238 μg/cm2/h). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. Conclusion: From the obtained results, the topically oriented SLN-based gel formulation of tazarotene could be useful in providing effective and site-specific psoriasis treatment.


Author(s):  
PALLAVI M CHAUDHARI ◽  
VAISHNAVI M BIND

Objective: The main objective of the study was to formulate and evaluate and perform an optimization study of lavender essential oil loaded solid lipid nanoparticles (SLNs) based gel. Materials and Methods: SLNs were prepared by the hot homogenization technique. A total of eight formulations were formulated as per 23 factorial design by design expert 11 software. The formulated SLNs were further evaluated for particle size, entrapment efficiency, drug release profile. After evaluation, the optimized batch was further used for formulating gel. The formulated gel was further subjected to ex vivo studies. Results: After the evaluation of all the parameters, batch 7 was found to be optimized. Batch 7 was found to have the lowest particle size of 30.91±0.30, higher entrapment efficiency of 89.99±0.87, and higher drug release of 90.41±0.55. It was further used for formulating gel which was found to be consistent, homogenous, smooth, and spreadable. The % inhibition of the formulated SLN based gel was found to be 28±0.1%. Conclusion: The SLNs were prepared and were formulated into the gel. The gel showed anti-inflammatory activity.


2021 ◽  
Vol 11 (2-S) ◽  
pp. 66-75
Author(s):  
Kumara Swamy Samanthula ◽  
Ramesh Alli ◽  
Thirupathi Gorre

Ropinirole (RP), is a selective dopamine agonist that is used alone or with other medications to treat the symptoms of Parkinson’s disease (PD). RP has low bioavailability of only about 50% due to the first-pass metabolism, and it requires frequent dosing during oral administration. The objective of the current research was to develop RP loaded solid lipid nanoparticles (RP-SLNs), nanostructured lipid carriers (RP-NLCs), and their corresponding hydrogels (RP-SLN-C and RP-NLC-C) that might improve efficacy in PD treatment. RP nanoparticles were prepared by homogenization aided probe sonication method and optimized based on particle size, polydispersity index (PDI), zeta potential (ZP), assay, entrapment efficiency, and in vitro release studies. Optimized formulations were converted to hydrogel formulations using Carbopol 934 as a gelling polymer and optimized based on rheological and release characteristics. Optimized formulations were further evaluated using differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), scanning electron microscopy (SEM), freeze-drying, and stability study at refrigerated and room temperatures. The optimized RP-SLN formulation showed particle size and entrapment efficiency of 213.5±3.8 nm and 77.9±3.1% compared to 190.6±3.7 nm and 85.7±1.7% for optimized RP-NLC formulation. PXRD supplemented and confirmed DSC results, RP was entrapped in a molecularly dispersed state inside the core of the lipid nanocarrier. Furthermore, RP loaded lipid nanocarriers revealed a spherical shape in SEM images. In vitro release studies demonstrated sustained release profiles for RP from SLNs, NLCs, and their hydrogels over 24 h and were stable over three months at 4ºC and 25ºC storage conditions. Keywords: Parkinson’s disease, Ropinirole, Solid lipid nanoparticles, Nanostructured lipid carriers, Hydrogel.


Sign in / Sign up

Export Citation Format

Share Document