Self Microemulsifying Nutraceutical and Drug Delivery Systems

Author(s):  
Vikrant P Wankhade ◽  
Nivedita S Kale ◽  
K.K Tapar

Many chemical entities and nutraceuticals are poor water soluble and show high lipophilicity. It’s difficult to formulate them into oral formulation because of its low aqueous solubility which ultimately affects bioavailability. To enhance the bioavailability of such drugs compounds, self microemulsifying drug delivery system is the reliable drug delivery system. In this system the drug is incorporated in the isotropic system and formulated as unit dosage form. Self microemulsifying drug delivery system is the novel emulsified system composed of anhydrous isotropic mixture of oils, surfactant, and co solvent and sometimes co surfactant. Drug is directly dispersed into the entire gastro intestinal tract with continuous peristaltic movement and drug is available in the solution form of microemulsion, absorbed through lymphatic system and bypasses the dissolution step. Hence they increase the patient compliance. The excipients are selected on basis of construction of ternary phase diagram. Self micro-emulsifying drug delivery system is very useful for drug in which drug dissolution is rate limiting step. This review describes the novel approaches and evaluation parameters of the self microemulsifying drug delivery system towards different classic drugs, proteins-peptides, and nutraceuticals in various oral microemulsion compositions and microstructures.

Author(s):  
Kanuri Lakshmi Prasad ◽  
Kuralla Hari

Objective: To enhance solubility and dissolution rate of budesonide through development of solid self-nanoemulsifying drug delivery system (S-SNEDDS). Methods: Liquid self-nanoemulsifying drug delivery systems (L-SNEDDS) were prepared and ternary phase diagram was constructed using Origin pro 8. Liquid self-nanoemulsifying formulation LF2 having 20% oil and 80% of surfactant/co-surfactant was optimized from the three formulations (LF1-LF3) to convert in to solid, through various characterization techniques like self-emulsification, in vitro drug release profile and drug content estimation. The prepared L-SNEDDS converted into S-SNEDDS, SF1-SF6 by adsorption technique using Aerosil 200, Neusilin US2, and Neusilin UFL2 to improve flowability, compressibility and stability. Results: Formulation LF2 exhibited globule size of 82.4 nm, PDI 0.349 and Zeta potential -28.6 mV with drug indicating the stability and homogeneity of particles. The optimized formulation SF4 containing Neusilin UFL2 was characterized by DSC, FTIR, X-Ray diffraction studies and found no incompatibility and no major shifts were noticed. Formulation SF4 released 100 % drug in 20 min against pure drug release of 47 % in 60 min. Regardless of the form (i.e. liquid or solid) similar performance of emulsification efficiency is observed. Conclusion: The results demonstrated that the technique of novel solid self-nanoemulsifying drug delivery system can be employed to enhance the solubility and dissolution rate of poorly water-soluble drug budesonide.


Author(s):  
M. Sunitha Reddy ◽  
Baskarla Sravani

Present research work was aimed to enhance aqueous solubility and dissolution rate of olanzapine by solid self nano emulsifying drug delivery system(S-SNEDDS). Olanzapine is a BCS class II drug having 65% oral bioavailability; it is used in the treatment of psychosis, depression and mania conditions. Oils, Surfactants, Co surfactants were selected depending upon the saturated solubility of olanzapine in those components; excipients were screened depending on olanzapine solubility in various oils, surfactants and co surfactants. Surfactant: co surfactant {Smix} ratios i.e., 3:1 and 4:1 were prepared to determine nano emulsion regions and also to formulate liquid self nano emulsifying drug delivery system (L-SNEDDS). Pseudo ternary phase diagram were plotted by using Triplot version 4.1.2 software, nano emulsion region was determined and evaluated. Formulations were designed based on saturated solubility of olanzapine and Pseudo ternary phase diagram using various ratios of oils [Capryol 90], surfactants [Kolliphor EL], co surfactants [Lauroglycol 90] depending on its solubility and nano emulsion formation four formulations were developed which are further selected for characterisation of L-SNEDDS like robustness to dilution, self emulsification, determination of droplet size, PDI, Drug loading efficacy, zeta potential and also Invitro drug release. Among those four formulations, F1 (SB184J 4:6) was optimum because compared to other three formulations F3 gave best results in terms of droplet size (66nm) with PDI (0.24), Invitro drug release, dissolution rate of F1 SNEDDS having (88.201± 0.25%). Invitro drug release of F1 formulation was compared with that of Olanzapine [API] (45.281± 0.52%) the results indicating that there is a increase in solubility and dissolution rate of olanzapine by 2.2 times more compared to pure olanzapine (API). F1 (SB184J 4:6) were converted into S-SNEDDS by adsorption process by addition porous carriers (Aerosil 200). Formulated S-SNEDDS were undergone various evaluation parameters and also reconstitution parameters to determine Droplet size and Invitro drug release of solid F1 (SB184J4:6) formulation. The results of present study demonstrates that olanzapine SNEDDS has an ability and potential to enhance solubility and dissolution rate.


2013 ◽  
Vol 63 (2) ◽  
pp. 241-251 ◽  
Author(s):  
Ramesh Jakki ◽  
Muzammil Afzal Syed ◽  
Prabhakar Kandadi ◽  
Kishan Veerabrahma

The main objective of this work was to prepare a self-micro emulsifying drug delivery system (SMEDDS) for enhancement of oral bioavailability of domperidone, a poorly water soluble drug. The solubility of the drug was determined in various vehicles. A pseudo ternary phase diagram was constructed to identify the self-micro emulsification region. The in vitro self-micro emulsification properties and droplet size analysis of SMEDDS were studied following their addition to water under mild agitation. Further, the resultant formulations were investigated for clarity, phase separation, globule size, effect of pH and dilutions (1:100, 1:500, 1:1000) and freeze-thaw stability. The optimized formulation, SMEDDS-B used for in vitro dissolution and bioavailability assessment, contained oil (Labrafac CC, 25 %, m/m), surfactant (Tween 80, 55 %, m/m), and co-surfactant (Transcutol®, 20 %, m/m). The preliminary oral bioavailability of domperidone from SMEDDS was 1.92-fold higher compared to that of domperidone suspension in rats. The AUC0-24 and cmax values were 3.38 ± 0.81 μg h mL-1 and 0.44 ± 0.03 μg mL-1 for SMEDDS-B formulation in comparison with 1.74 ± 0.18 μg h mL-1 and 0.24 ± 0.02 μg mL-1 for domperidone suspension, suggesting a significant increase (p < 0.05) in oral bioavailability of domperidone from SMEDDSS.


Author(s):  
Vishal N Kushare ◽  
Saravanan S

The goal of this research was to formulate and test invitro the self-nano emulsifying drug delivery system (SNEDDS) of poorly water-soluble herbal material. Linalool, an essential of Coriandrum sativum with anti-epileptic activity, was isolated from Coriandrum sativum by using Soxhlet extraction method followed by column chromatography and fractionates are concentrated under reduced pressure by using rotary flash evaporator. It is low water soluble material; unpredictable dissolution and low bioavailability make it very difficult to administer linalool orally.The captex-200 oil was exhibited maximum solubility of linalool. Thus, it was chosen as the oil phase, while Tween 80 and PEG-200 were chosen as surfactant and co-surfactant respectively for the preparation of linalool SNEDDS. For the determination of existence zone of nanoemulsion, pseudo ternary phase diagram was developed using the Prism Software by using water titration method. Self-nanoemulsion are evaluated for scanning electron microscopy (SEM), particle size analysis, polydispersity index, zeta potential and invitro drug release.The s9 formulation showed 97.72% cumulative release higher than other selected formulations(S4-S8). The S9 formulation showed promising result on droplet size, zeta potential, polydispersity index, invitro drug dissolution. It was concluded that SNEDDS formation from captex-200, tween 80, PEG-200, Smix (4:1), is a promising approach to enhancing substance solubility and the pace of dissolution.


Molecules ◽  
2015 ◽  
Vol 20 (8) ◽  
pp. 14684-14698 ◽  
Author(s):  
Marko Krstić ◽  
Miljana Popović ◽  
Vladimir Dobričić ◽  
Svetlana Ibrić

Author(s):  
Suwarna R. Deshmukh ◽  
Suparna S. Bakhle ◽  
Kanchan P. Upadhye ◽  
Gouri R. Dixit

Objective: Gliclazide (GCZ) is a widely prescribed anti-diabetic drug belongs to class IΙ under BCS and exhibit low and variable oral bioavailability due to its poor aqueous solubility. The present investigations highlight the development of solid self-emulsifying drug delivery system (solid-SEDDS) for improved oral delivery of the poorly water-soluble drug, GCZ.Methods: Various oils, surfactant and co-surfactant, were screened for their emulsification ability. Ternary phase diagrams were plotted to identify the zone of micro-emulsification. Liquid SEDDS of the drug were formulated using lemon oil as the oil phase, tween 80, as the surfactant, and labrasol, as the co-surfactant. The optimized liquid SEDDS was transformed into free-flowing powder using florite R as the adsorbent. Results: Self-emulsifying powder retained the self-emulsifying property of the liquid SEDDS. The morphology of solid-SEDDS from scanning electron microscopy studies demonstrated the presence of spherical, granular particles indicating good flowing ability. X-ray powder diffraction studies confirmed solubilization of the drug in the lipid excipients and/or transformation of a crystalline form of the drug to amorphous form. In vitro dissolution studies revealed enhanced release of the drug from solid-SEDDS as compared to plain drug and marketed formulation.Conclusion: Thus it can be concluded that solid-SEDDS, amenable for the development of solid dosage form, can be successfully developed using florite R with the potential of enhancing the solubility, dissolution rate, and bioavailability of the drug.


2021 ◽  
Vol 001 (01) ◽  
Author(s):  
Mamta Nasit ◽  
Meshva Patel ◽  
Ajay Solanki ◽  
Jayendrakumar Patel

In recent time, about 70% of new molecules discovered or under discovery are lipophilic in nature with low aqueous solubility which makes a great challenge for formulation scientists to making these molecules to be have a sufficient aqueous solubility and oral bioavailability. Lipid-based drug delivery system (LBDDS- wide ranging designation for formulations containing a dissolved or suspended drug in lipid excipients) is one of the appropriate approach which gained significant popularity due to their ability to deliver poorly water-soluble drugs with improved solubility and oral bioavailability. Conventional LBDDS, including lipid emulsions, suspensions etc. suffer from various drawbacks limiting their widespread commercialization and use. Therefore, solid-state LBDDS fabricated from conventional LBDDS using different types of solid carriers via various solidification methods eliminated some of the various limitations of conventional LBDDS with great stability. The present review provide overview on the various types of solid state lipid based drug delivery systems, different types of solid carriers use in formulation of solid state lipid based drug delivery system, various solidification techniques for conversion of liquid lipid system to solid dosage form, advantages and some practical limitations of lipid based drug delivery system.


Author(s):  
Fahad F. Salim ◽  
Nawal A. Rajab

Piroxicam (PIR) is a nonsteroidal anti-inflammatory drug of oxicam category, used in gout, arthritis, as well as other inflammatory conditions (topically and orally). PIR is practically insoluble in water, therefore the aim is prepare and evaluate piroxicam as liquid self-nanoemulsifying drug delivery system to enhance its dispersibility and stability. The Dispersibilty and Stability study have been conducted in Oil, Surfactant and Co-surfactant for choosing the best materials to dissolve piroxicam. The pseudo ternary phase diagrams have been set at 1:1, 2:1, 3:1 as well as 4:1 ratio of surfactants and co-surfactants, also there are 4 formulations were prepared by using various concentrations of transcutol HP, cremophore EL and triacetin oil. All the constructed prepared formulas have been assessed for in vitro drug dissolution, thermodynamic stability, polydispersity index, robustness to dilution, particle size distribution, drug content, and the dispersibility and emulsification time.From the presented research concluded that the self-nanoemulsifying drug delivery system is the convenient method for improving Dispersibilty and Stability of piroxicam.  Keywords: Pseudo-ternary phase diagram, Dissolution rate, SNEDDS, Piroxicam.


2019 ◽  
Vol 9 (2) ◽  
pp. 210-228
Author(s):  
Suryakanta Swain ◽  
Sarwar Beg ◽  
Prafulla K. Sahu ◽  
Bikash R. Jena ◽  
Sitty M. Babu

Background: Irbesartan is an anti-hypertensive BCS class II drug exhibiting poor aqueous solubility, which makes it highly challenging for delivery through the oral route. Based on this fact, a self-microemulsifying drug delivery system (SMEDDS) was designed and characterized for augmenting the aqueous solubility and dissolution rate of irbesartan. Methods: Several blends of oil (Capmul MCM EP), surfactant (Tween 80) and co-surfactant (PEG 600) were screened from the preliminary solubility and pseudo-ternary phase diagram studies. Systematic optimization of the SMEDDS was carried out using 3-factor 3-level Box-Behnken design. Results: The optimized formulation was identified by numerical optimization technique, which revealed faster emulsification time, high percent transmittance and drug content, lower globule size < 100 nm, zeta potential and excellent thermodynamic stability. The optimal formulation unveiled more than 93.3% drug release in vitro within 60 minutes, while the pure drug exhibited only 20% drug release, respectively. Conclusion: Ex vivo permeability and in situ intestinal absorption of drugs was improved nearly 2 to 3- fold by the optimal SMEDDS formulation against the pure drug alone (p < 0.001). Overall, the proposed SMEDDS formulation of irbesartan exhibited a superior biopharmaceutical performance.


2014 ◽  
Vol 1060 ◽  
pp. 37-40
Author(s):  
Yotsanan Weerapol ◽  
Sontaya Limmatvapirat ◽  
Pornsak Sriamornsak

The low solubility of poorly water-soluble drug is a major problem of oral drug adsorption. The self-emulsifying system can be applied to eliminate the drug dissolution step and improve the drug absorption. In this research, liquid self-nanoemulsifying drug delivery system (SNEDDS) composing of polyethoxylated castor oil, caprylic/capric glyceride and diethylene glycol monoethyl ether was developed. The drugs with similar structure but different lipophilicity (log P), nifedipine (NDP), felodipine (FDP) and manidipine (MDP), were investigated. Size and size distribution of emulsion after dilution in acid medium and in vitro drug dissolution were determined. The results showed that the size of emulsions obtained from dilution of SNEDDS in acidic medium ranged from 100-150 nm. Drug dissolution from SNEDDS was different depending on lipophilicity of drug, i.e., 98.6, 74.3 and 52.5% for NDP (log P 2.50), FDP (log P 4.46) and MDP (log P 5.46), respectively. The results suggested that the difference in lipophilicity may influence the drug dissolution from SNEDDS.


Sign in / Sign up

Export Citation Format

Share Document