Formulation and Evaluation of Solid Self Nano Emulsifying drug delivery System of Olanzapine to Enhance Aqueous Solubility and Dissolution Rate

Author(s):  
M. Sunitha Reddy ◽  
Baskarla Sravani

Present research work was aimed to enhance aqueous solubility and dissolution rate of olanzapine by solid self nano emulsifying drug delivery system(S-SNEDDS). Olanzapine is a BCS class II drug having 65% oral bioavailability; it is used in the treatment of psychosis, depression and mania conditions. Oils, Surfactants, Co surfactants were selected depending upon the saturated solubility of olanzapine in those components; excipients were screened depending on olanzapine solubility in various oils, surfactants and co surfactants. Surfactant: co surfactant {Smix} ratios i.e., 3:1 and 4:1 were prepared to determine nano emulsion regions and also to formulate liquid self nano emulsifying drug delivery system (L-SNEDDS). Pseudo ternary phase diagram were plotted by using Triplot version 4.1.2 software, nano emulsion region was determined and evaluated. Formulations were designed based on saturated solubility of olanzapine and Pseudo ternary phase diagram using various ratios of oils [Capryol 90], surfactants [Kolliphor EL], co surfactants [Lauroglycol 90] depending on its solubility and nano emulsion formation four formulations were developed which are further selected for characterisation of L-SNEDDS like robustness to dilution, self emulsification, determination of droplet size, PDI, Drug loading efficacy, zeta potential and also Invitro drug release. Among those four formulations, F1 (SB184J 4:6) was optimum because compared to other three formulations F3 gave best results in terms of droplet size (66nm) with PDI (0.24), Invitro drug release, dissolution rate of F1 SNEDDS having (88.201± 0.25%). Invitro drug release of F1 formulation was compared with that of Olanzapine [API] (45.281± 0.52%) the results indicating that there is a increase in solubility and dissolution rate of olanzapine by 2.2 times more compared to pure olanzapine (API). F1 (SB184J 4:6) were converted into S-SNEDDS by adsorption process by addition porous carriers (Aerosil 200). Formulated S-SNEDDS were undergone various evaluation parameters and also reconstitution parameters to determine Droplet size and Invitro drug release of solid F1 (SB184J4:6) formulation. The results of present study demonstrates that olanzapine SNEDDS has an ability and potential to enhance solubility and dissolution rate.

Author(s):  
Kanuri Lakshmi Prasad ◽  
Kuralla Hari

Objective: To enhance solubility and dissolution rate of budesonide through development of solid self-nanoemulsifying drug delivery system (S-SNEDDS). Methods: Liquid self-nanoemulsifying drug delivery systems (L-SNEDDS) were prepared and ternary phase diagram was constructed using Origin pro 8. Liquid self-nanoemulsifying formulation LF2 having 20% oil and 80% of surfactant/co-surfactant was optimized from the three formulations (LF1-LF3) to convert in to solid, through various characterization techniques like self-emulsification, in vitro drug release profile and drug content estimation. The prepared L-SNEDDS converted into S-SNEDDS, SF1-SF6 by adsorption technique using Aerosil 200, Neusilin US2, and Neusilin UFL2 to improve flowability, compressibility and stability. Results: Formulation LF2 exhibited globule size of 82.4 nm, PDI 0.349 and Zeta potential -28.6 mV with drug indicating the stability and homogeneity of particles. The optimized formulation SF4 containing Neusilin UFL2 was characterized by DSC, FTIR, X-Ray diffraction studies and found no incompatibility and no major shifts were noticed. Formulation SF4 released 100 % drug in 20 min against pure drug release of 47 % in 60 min. Regardless of the form (i.e. liquid or solid) similar performance of emulsification efficiency is observed. Conclusion: The results demonstrated that the technique of novel solid self-nanoemulsifying drug delivery system can be employed to enhance the solubility and dissolution rate of poorly water-soluble drug budesonide.


2019 ◽  
Vol 9 (2) ◽  
pp. 210-228
Author(s):  
Suryakanta Swain ◽  
Sarwar Beg ◽  
Prafulla K. Sahu ◽  
Bikash R. Jena ◽  
Sitty M. Babu

Background: Irbesartan is an anti-hypertensive BCS class II drug exhibiting poor aqueous solubility, which makes it highly challenging for delivery through the oral route. Based on this fact, a self-microemulsifying drug delivery system (SMEDDS) was designed and characterized for augmenting the aqueous solubility and dissolution rate of irbesartan. Methods: Several blends of oil (Capmul MCM EP), surfactant (Tween 80) and co-surfactant (PEG 600) were screened from the preliminary solubility and pseudo-ternary phase diagram studies. Systematic optimization of the SMEDDS was carried out using 3-factor 3-level Box-Behnken design. Results: The optimized formulation was identified by numerical optimization technique, which revealed faster emulsification time, high percent transmittance and drug content, lower globule size < 100 nm, zeta potential and excellent thermodynamic stability. The optimal formulation unveiled more than 93.3% drug release in vitro within 60 minutes, while the pure drug exhibited only 20% drug release, respectively. Conclusion: Ex vivo permeability and in situ intestinal absorption of drugs was improved nearly 2 to 3- fold by the optimal SMEDDS formulation against the pure drug alone (p < 0.001). Overall, the proposed SMEDDS formulation of irbesartan exhibited a superior biopharmaceutical performance.


Author(s):  
Vikrant P Wankhade ◽  
Nivedita S Kale ◽  
K.K Tapar

Many chemical entities and nutraceuticals are poor water soluble and show high lipophilicity. It’s difficult to formulate them into oral formulation because of its low aqueous solubility which ultimately affects bioavailability. To enhance the bioavailability of such drugs compounds, self microemulsifying drug delivery system is the reliable drug delivery system. In this system the drug is incorporated in the isotropic system and formulated as unit dosage form. Self microemulsifying drug delivery system is the novel emulsified system composed of anhydrous isotropic mixture of oils, surfactant, and co solvent and sometimes co surfactant. Drug is directly dispersed into the entire gastro intestinal tract with continuous peristaltic movement and drug is available in the solution form of microemulsion, absorbed through lymphatic system and bypasses the dissolution step. Hence they increase the patient compliance. The excipients are selected on basis of construction of ternary phase diagram. Self micro-emulsifying drug delivery system is very useful for drug in which drug dissolution is rate limiting step. This review describes the novel approaches and evaluation parameters of the self microemulsifying drug delivery system towards different classic drugs, proteins-peptides, and nutraceuticals in various oral microemulsion compositions and microstructures.


Author(s):  
Sunitha M Reddy ◽  
Sravani Baskarla

This article describes current strategies to enhance aqueous solubility and dissolution rate of poor soluble drugs. Most drugs in the market are lipophilic with low or poor water solubility. There are various methods to enhance solubility: co-solvency, particle size reduction, salt formation and Self Nanoemulsifying drug delivery systems, SEDDS is a novel approach to enhance solubility, dissolution rate and bioavailability of drugs. The study involves formulation and evaluation of solid self-Nano emulsifying drug delivery system (S-SNEDDS) to enhance aqueous solubility and dissolution rate. Oral route is the most convenient route for non-invasive administration. S-SNEDDS has more advantages when compared to the liquid self-emulsifying drug delivery system. Excipients were selected depends upon the drug compatibility oils, surfactants and co surfactants were selected to formulate Liquid SNEDDS these formulated liquid self-nano emulsifying drug delivery system converted into solid by the help of porous carriers, Melted binder or with the help of drying process. Conversion process of liquid to solid involves various techniques; they are spray drying; freeze drying and fluid bed coating technique; extrusion, melting granulation technique. Liquid SNEDDS has a high ability to improve dissolution and solubility of drugs but it also has disadvantages like incompatibility, decreased drug loading, shorter shelf life, ease of manufacturing and ability to deliver peptides that are prone to enzymatic hydrolysis.  


2019 ◽  
Vol 10 (4) ◽  
pp. 3304-3314
Author(s):  
Sabitri Bindhani ◽  
Snehamayee Mohapatra ◽  
Rajat Ku. Kar ◽  
Utkalika Mahapatra

Eprosartan Mesylate (EM), an angiotensin II receptor blocker used in the treatment of high blood pressure. But poor solubility and bioavailability (13%) of eprosartan mesylate is a major challenging factor for improving its drug release rate. The main objective of the present work to develop and characterize self micro emulsifying drug delivery system of eprosartan mesylate by using compatible oil, surfactant and co-surfactant. For the selection of oil, surfactant and cosurfactant, solubility screening studies has been carried out. The nine formulations are prepared using peppermint oil, tween 80 and PEG 400. A pseudo ternary phase diagram was prepared to determine the self emulsion region. Four optimized formulations were prepared at 1:1 ratio(a mixture of surfactant and cosurfactant). These four formulations were evaluated for self-emulsification time, droplet size measurement, drug content analysis robustness to dilution test, viscosity analysis, f.t.i.r. The study and in-vitro diffusion studies. The ratio of scosmix (a mixture of surfactant and cosurfactant) of optimized formulation (pf5) was varied to pfa1 (2:1), pf2 (3:1), pfa3 (1:2) and compared with pure drug. The formulation having pfa1 (2:1) shown drug release of 93.13 % in 330 minutes where as pure drug showed a drug release of 54.51% in 330 minutes. So the prepared SMEDDS formulations were efficient and better than the pure drug, and it followed Korsmeyer pappes due to highest r2 value followed by Hixon crowel. It was concluded that incorporation of eprosartan mesylate in selfmicroemulsifying system is a great potential for improving the solubility and dissolution rate of eprosartan mesylate.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (11) ◽  
pp. 48-51
Author(s):  
K Sneha Latha ◽  
◽  
G. B Kiran Kumar ◽  
G. A Mohammed ◽  
S.K Chowdary ◽  
...  

Aim of the present investigation was to develop lipid based self-emulsifying drug delivery system (SEDDS) to improve bioavailability of glimepiride. Glimepiride is a class II molecule according to BCS (Biopharmaceutical Classification System), having low solubility. Optimized self-emulsifying drug delivery system of glimepiride comprising oil (oleic acid), surfactant (Tween 80®) and co-surfactant (PEG 200®) was prepared. Optimized SEDDS of glimepiride showed increase in dissolution rate. It was concluded that the formulation was found to be showing significant improvement in terms of the drug release with complete release of drug within 18 minutes. Thus, self-emulsifying formulation of glimepiride was successfully developed.


Author(s):  
SABITRI BINDHANI ◽  
SNEHAMAYEE MOHAPATRA ◽  
RAJAT KUMAR KAR

Objective: The objective of this work was to improve the solubility and dissolution rate of Nifedipine by preparing a solid-self micro emulsifying drug delivery system (Solid-smedds). Methods: Liquid-self-emulsifying drug delivery system formulations were prepared by using linseed oil as oil, tween 80 as a surfactant and PEG 400 as cosurfactant. Components were selected by solubility screening studies and the self-emulsifying region was identified by the pseudo-ternary phase diagram. Thermodynamic stability study was performed for the determination of stable liquid-smedds formulation. These formulations were evaluated for self-emulsification time, drug content analysis, robustness to dilution test, particle size analysis, in vitro diffusion study, and Stability study. Solid self-micro emulsifying formulations were prepared by using aerosil-200 at a different ratio. Lf9S (0.65:1) was selected due to its highest drug entrapment efficiency and a decrease in particle size. It was selected for further studies into DSC, SEM, FTIR, and XRD analysis. Results: DSC and XRD result shows that the drug within the formulation was in the amorphous state. From the SEM study, it was observed that the drug has been uniformly distributed and having a smooth surface. From the in vitro dissolution study, it improved the dissolution rate of nifedipine which was 98.70% of drug release where pure drug release only 6.72%. Conclusion: In conclusion, a solid self-micro emulsifying drug delivery system is improved the solubility and drug release rate but also improved the stability of the formulation.


Author(s):  
Dinesh Kaushik ◽  
Jyoti Malik ◽  
Satish Sardana ◽  
Chisa Matsubara

Oral route is the most preferred route of drug administration due to its easy accessibility, intake, and wide range of choices making it economical. Currently, greater than 60% of marketed drugs are oral products. Over 90% of therapeutic compounds given orally areknown to possess oral bioavailability limitations. Therefore, there is a need to explore various approaches that can be used to improve oral drug bioavailability besides using physical and chemical means. The objective of this study is to prepare a formulation i.e. self microemulsifying drug delivery system (SMEDDS) of nifedipine with the intention to improve the increase dissolution rate (solubility). This will ensure the quick absorption and uniform bioavailability of nifedipine. Selection of oils, surfactants and co-surfactants was done by determining % transparency and on the basis of compatibility studies by FTIR spectra analysis. Different SMEDDS formulation were prepared of different ratio of oil:surfactantmix (1:9,2:8,3:7,4:6,5:5,6:4,7:3,8:2,9:1) and different ratio of surfactants : cosurfactants. Pseudo ternary phase diagram were constructed by water titration method to obtain a particle micro-emulsion region (on the basis of clarity and transparency). The formulation B-I was optimized because of maximum transparency (87.35%) and maximum % drug entrapment (95.32%). The average droplet size and zeta potential was found 86.05 and -0.189. The solubility of nifedipine increase in SMEDDS formulation upto72.17%.From in vitro dissolution study it was proved that SMEDDS formulation releases drug at faster rate, thus the objective of increase solubility and hence the better dissolution rate for uniform bioavailability via SMEDDS formulation of nifedipine was successfully achieved.


Author(s):  
Heena Farooqui ◽  
Prashant Upadhyay

The purpose of this study was to prepare, optimize and evaluate self nano emulsifying drug delivery system (SNEDDS) containing 18- β glycerrhetinic acid which enhances the dissolution profile or bioavailability of the drug in comparison to pure suspension of 18- β glycerrhetinic acid.18- β glycerrhetinic acid loaded SNEDDS having geranium oil as oil phase, tween 80 as a surfactant, and dimethyl sulfoxide (DMSO) as co-surfactant were prepared using pseudo ternary phase diagram and Box-Behnken experimental design was used to optimize the different formulations. Optimized formulations were characterized for self-emulsifying time, globule size, zeta potential, and drug release. The mean droplet size and PDI of the optimized formulation were found to be in a variation of 93.42 nm and 0.401 respectively. FTIR data showed no physicochemical interaction between excipients and drug. The encapsulation efficiency of optimised 18- β glycerrhetinic acid SNEDDS was found 80.12±1.52% , % transmittance was found 99.34±0.134% and the viscosity of all the formulations was found 0.8872 cp. Three-dimensional response surface plots and two-dimensional contour plots of the responses across the selected factors were constructed that explained the relationship between the independent and dependent variables. Release kinetics was calculated by using KinetDS3.0. It was concluded that prepared formulations were formulated with approximately desired mean droplet size confirmed by Box- Behnken experimental design as well as properly optimized and characterized.


Author(s):  
ShirishaG. Suddala ◽  
S. K. Sahoo ◽  
M. R. Yamsani

Objective: The objective of this research work was to develop and evaluate the floating– pulsatile drug delivery system (FPDDS) of meloxicam intended for Chrono pharmacotherapy of rheumatoid arthritis. Methods: The system consisting of drug containing core, coated with hydrophilic erodible polymer, which is responsible for a lag phase for pulsatile release, top cover buoyant layer was prepared with HPMC K4M and sodium bicarbonate, provides buoyancy to increase retention of the oral dosage form in the stomach. Meloxicam is a COX-2 inhibitor used to treat joint diseases such as osteoarthritis and rheumatoid arthritis. For rheumatoid arthritis Chrono pharmacotherapy has been recommended to ensure that the highest blood levels of the drug coincide with peak pain and stiffness. Result and discussion: The prepared tablets were characterized and found to exhibit satisfactory physico-chemical characteristics. Hence, the main objective of present work is to formulate FPDDS of meloxicam in order to achieve drug release after pre-determined lag phase. Developed formulations were evaluated for in vitro drug release studies, water uptake and erosion studies, floating behaviour and in vivo radiology studies. Results showed that a certain lag time before drug release which was due to the erosion of the hydrophilic erodible polymer. The lag time clearly depends on the type and amount of hydrophilic polymer which was applied on the inner cores. Floating time and floating lag time was controlled by quantity and composition of buoyant layer. In vivo radiology studies point out the capability of the system of longer residence time of the tablets in the gastric region and releasing the drug after a programmed lag time. Conclusion: The optimized formulation of the developed system provided a lag phase while showing the gastroretension followed by pulsatile drug release that would be beneficial for chronotherapy of rheumatoid arthritis and osteoarthritis.


Sign in / Sign up

Export Citation Format

Share Document