scholarly journals Solid-State Lipid - Based Lipid Drug Delivery System

2021 ◽  
Vol 001 (01) ◽  
Author(s):  
Mamta Nasit ◽  
Meshva Patel ◽  
Ajay Solanki ◽  
Jayendrakumar Patel

In recent time, about 70% of new molecules discovered or under discovery are lipophilic in nature with low aqueous solubility which makes a great challenge for formulation scientists to making these molecules to be have a sufficient aqueous solubility and oral bioavailability. Lipid-based drug delivery system (LBDDS- wide ranging designation for formulations containing a dissolved or suspended drug in lipid excipients) is one of the appropriate approach which gained significant popularity due to their ability to deliver poorly water-soluble drugs with improved solubility and oral bioavailability. Conventional LBDDS, including lipid emulsions, suspensions etc. suffer from various drawbacks limiting their widespread commercialization and use. Therefore, solid-state LBDDS fabricated from conventional LBDDS using different types of solid carriers via various solidification methods eliminated some of the various limitations of conventional LBDDS with great stability. The present review provide overview on the various types of solid state lipid based drug delivery systems, different types of solid carriers use in formulation of solid state lipid based drug delivery system, various solidification techniques for conversion of liquid lipid system to solid dosage form, advantages and some practical limitations of lipid based drug delivery system.

Author(s):  
Vikrant P Wankhade ◽  
Nivedita S Kale ◽  
K.K Tapar

Many chemical entities and nutraceuticals are poor water soluble and show high lipophilicity. It’s difficult to formulate them into oral formulation because of its low aqueous solubility which ultimately affects bioavailability. To enhance the bioavailability of such drugs compounds, self microemulsifying drug delivery system is the reliable drug delivery system. In this system the drug is incorporated in the isotropic system and formulated as unit dosage form. Self microemulsifying drug delivery system is the novel emulsified system composed of anhydrous isotropic mixture of oils, surfactant, and co solvent and sometimes co surfactant. Drug is directly dispersed into the entire gastro intestinal tract with continuous peristaltic movement and drug is available in the solution form of microemulsion, absorbed through lymphatic system and bypasses the dissolution step. Hence they increase the patient compliance. The excipients are selected on basis of construction of ternary phase diagram. Self micro-emulsifying drug delivery system is very useful for drug in which drug dissolution is rate limiting step. This review describes the novel approaches and evaluation parameters of the self microemulsifying drug delivery system towards different classic drugs, proteins-peptides, and nutraceuticals in various oral microemulsion compositions and microstructures.


Planta Medica ◽  
2020 ◽  
Author(s):  
Patcharawalai Jaisamut ◽  
Subhaphorn Wanna ◽  
Surasak Limsuwan ◽  
Sasitorn Chusri ◽  
Kamonthip Wiwattanawongsa ◽  
...  

AbstractBoth quercetin and resveratrol are promising plant-derived compounds with various well-described biological activities; however, they are categorized as having low aqueous solubility and labile natural compounds. The purpose of the present study was to propose a drug delivery system to enhance the oral bioavailability of combined quercetin and resveratrol. The suitable self-microemulsifying formulation containing quercetin together with resveratrol comprised 100 mg Capryol 90, 700 mg Cremophor EL, 200 mg Labrasol, 20 mg quercetin, and 20 mg resveratrol, which gave a particle size of 16.91 ± 0.08 nm and was stable under both intermediate and accelerated storage conditions for 12 months. The percentages of release for quercetin and resveratrol in the self-microemulsifying formulation were 75.88 ± 1.44 and 86.32 ± 2.32%, respectively, at 30 min. In rats, an in vivo pharmacokinetics study revealed that the area under the curve of the self-microemulsifying formulation containing quercetin and resveratrol increased approximately ninefold for quercetin and threefold for resveratrol compared with the unformulated compounds. Moreover, the self-microemulsifying formulation containing quercetin and resveratrol slightly enhanced the in vitro antioxidant and cytotoxic effects on AGS, Caco-2, and HT-29 cells. These findings demonstrate that the self-microemulsifying formulation containing quercetin and resveratrol could successfully enhance the oral bioavailability of the combination of quercetin and resveratrol without interfering with their biological activities. These results provide valuable information for more in-depth research into the utilization of combined quercetin and resveratrol.


2019 ◽  
Vol 31 (4) ◽  
pp. 751-759 ◽  
Author(s):  
Sabitri Bindhani ◽  
S. Mohapatra ◽  
R.K. Kar

In recent years, nearly 40 % newer drugs compounds are hydrophobic in nature, which is a major challenge now-a-days for oral drug delivering due to low aqueous solubility. Lipid based drug delivery system is one of the favourable approach for poorly soluble compounds which can improve the drug absorption and oral bioavailability. Due to ion-pairing with appropriate surfactant and co-surfactant the macromolecular drug molecular oil droplet being found in the gut flow oral absorption which sufficiently stable towards lipase. Due to the formation of emulsified drug in micron level, it can efficiently endow the oral bioavailability. Several comprehensive papers have been published in the literature illustration diverse type of lipid based formulation with recent advancements. This article is based on an exhaustive and updated review on newer technology which out line an explicit discussion on its formulations and industrial scale up.


2020 ◽  
Vol 8 (4) ◽  
pp. 290-301
Author(s):  
Yujin Zhu ◽  
Jing Ye ◽  
Quan Zhang

: Self-emulsifying drug delivery system (SEDDS) is a kind of solid or liquid formulation composed of drugs, oil, surfactant and cosurfactant. It could form a fine emulsion (micro/nano) in the gastrointestinal tract after oral administration. Later on, the formed emulsion is absorbed through the lymphatic pathway. The oral bioavailability of drugs in SEDDS would be improved for bypassing the first-pass effect of the liver. Therefore, SEDDS has become a vital strategy to increase the oral bioavailability of poor watersoluble drugs. In addition, there is no aqueous phase in SEDDS, thus SEDDS is a homogeneous system, consequently being suitable for large-scale production and more stable than conventional emulsion. However, the role of formulation aspects in the biological property of SEDDS is not fully clear. In order to prepare the satisfying SEDDS to improve oral drug bioavailability, we need to fully understand the various factors that affect the in vivo behavior of SEDDS. In this review, we would explore the role of ingredient (drugs, oils, surfactant and cosurfactant) of SEDDS in increasing oral drug bioavailability. We would also discuss the effect of physicochemical property (particle size and zeta potential) of SEDDS on the oral drug bioavailability enhancement. This review would provide an approach to develop a rational SEDDS to improving oral drug bioavailability. Lay Summary: Self-emulsifying drug-delivery system (SEDDS) has been proven to be promising in ameliorating the oral bioavailability of poor water-soluble drugs. This review highlighted the influence of excipients and physicochemical property of SEDDS on the formation of emulsion and the oral absorption of drugs in the body.


Sign in / Sign up

Export Citation Format

Share Document