Identification of Lyoprotectants Released from Gradient-freezing Pretreated Entocyte in Lactococcus Lactis Subsp. Lactis IL1403

2017 ◽  
Vol 17 (2) ◽  
pp. 122-134
Author(s):  
Lin Songyang ◽  
Kang Qiaozhen ◽  
Pan Dan ◽  
Liu Xin ◽  
Lu Laizheng ◽  
...  

Performance of Lactococcus lactis as a starter culture in food production largely depends on the use of lyoprotectants during lyophilization. Gradient-freezing of bacterial cultures was conducted at 4°C, −20°C, and −80°C by storing the samples at each temperature for 2 h, successively. The entocytes extracted from the frozen cells were used as a lyoprotectant in the follow-up freeze-drying process of Lactococcus lactis subsp. lactis IL1403. The cell survival rate of gradient-freezing group increased 6.4-fold by bacterial plate count method. Furthermore, a proteomics and bioinformatics method was applied to elucidate the protein changes of Lactococcus lactis subsp. lactis IL1403 in response to gradient-freezing by gel-free proteomics using tandem mass tags (TMTs). The results showed that 121 stress-related proteins were significantly influenced by gradient-freezing. These proteins were involved in several metabolism pathways including ribosome metabolism, amino acid metabolism, quorum sensing, phosphotransferase system (PTS), pentose phosphate pathway, microbial metabolism in diverse environments, and nitrogen metabolism, etc. Some of these proteins especially the up-regulated proteins are potential lyoprotectants in vitro and they still need to be further investigated.

2017 ◽  
Vol 80 (12) ◽  
pp. 2137-2146 ◽  
Author(s):  
Dimitrios Noutsopoulos ◽  
Athanasia Kakouri ◽  
Eleftheria Kartezini ◽  
Dimitrios Pappas ◽  
Efstathios Hatziloukas ◽  
...  

ABSTRACT This study evaluated in situ expression of the nisA gene by an indigenous, nisin A–producing (NisA+) Lactococcus lactis subsp. cremoris raw milk genotype, represented by strain M78, in traditional Greek Graviera cheeses under real factory-scale manufacturing and ripening conditions. Cheeses were produced with added a mixed thermophilic and mesophilic commercial starter culture (CSC) or with the CSC plus strain M78 (CSC+M78). Cheeses were sampled after curd cooking (day 0), fermentation of the unsalted molds for 24 h (day 1), brining (day 7), and ripening of the brined molds (14 to 15 kg each) for 30 days in a fully controlled industrial room (16.5°C; 91% relative humidity; day 37). Total RNA was directly extracted from the cheese samples, and the expression of nisA gene was evaluated by real-time reverse transcription PCR (qRT-PCR). Agar overlay and well diffusion bioassays were correspondingly used for in situ detection of the M78 NisA+ colonies in the cheese agar plates and antilisterial activity in whole-cheese slurry samples, respectively. Agar overlay assays showed good growth (>8 log CFU/g of cheese) of the NisA+ strain M78 in coculture with the CSC and vice versa. The nisA expression was detected in CSC+M78 cheese samples only, with its expression levels being the highest (16-fold increase compared with those of the control gene) on day 1, followed by significant reduction on day 7 and almost negligible expression on day 37. Based on the results, certain intrinsic and mainly implicit hurdle factors appeared to reduce growth prevalence rates and decrease nisA gene expression, as well as the nisin A–mediated antilisterial activities of the NisA+ strain M78 postfermentation. To our knowledge, this is the first report on quantitative expression of the nisA gene in a Greek cooked hard cheese during commercial manufacturing and ripening conditions by using a novel, rarely isolated, indigenous NisA+ L. lactis subsp. cremoris genotype as costarter culture.


2018 ◽  
Vol 7 (19) ◽  
Author(s):  
Thao D. Tran ◽  
Steven Huynh ◽  
Craig T. Parker ◽  
Ruyang Han ◽  
Robert Hnasko ◽  
...  

We present here the complete genome sequence of Lactococcus lactis strain 14B4, isolated from almond drupes in northern California. This strain was observed to inhibit the growth of Salmonella enterica serotype Poona strain RM3363 in vitro.


2015 ◽  
Vol 4 (5) ◽  
pp. 240-246
Author(s):  
Menad Najett ◽  
Chougrani Fadelaa ◽  
Moghtet Snoussi ◽  
Cheriguene Abderrahim

  The present study focused on the beneficial effects of Lactococcus lactis subsp lactis CNRZ 1427 with possible use as a therapeutic agent against Sal-monella sp.; also we have proposed different therapeutic possibilities of our situation against a pathogen Salmonella sp. We have conducted two tests In Vitro and In Vivo; where it is noted that treatment in the presence of this lac-tic strain is effective since it causes a remarkable decrease of the pathogen agent. At the end, the effectiveness of this lactic strain was confirmed by testing for resistance to gastrointestinal conditions (pH, bile salts and diges-tive enzymes).


Author(s):  
Mohamed G. Shehata ◽  
Malak A. El-Sahn ◽  
Sobhy A. El Sohaimy ◽  
Mohamed M. Youssef

2001 ◽  
Vol 183 (11) ◽  
pp. 3391-3398 ◽  
Author(s):  
Vicente Monedero ◽  
Oscar P. Kuipers ◽  
Emmanuel Jamet ◽  
Josef Deutscher

ABSTRACT In most low-G+C gram-positive bacteria, the phosphoryl carrier protein HPr of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) becomes phosphorylated at Ser-46. This ATP-dependent reaction is catalyzed by the bifunctional HPr kinase/P-Ser-HPr phosphatase. We found that serine-phosphorylated HPr (P-Ser-HPr) of Lactococcus lactis participates not only in carbon catabolite repression of an operon encoding a β-glucoside-specific EII and a 6-P-β-glucosidase but also in inducer exclusion of the non-PTS carbohydrates maltose and ribose. In a wild-type strain, transport of these non-PTS carbohydrates is strongly inhibited by the presence of glucose, whereas in a ptsH1 mutant, in which Ser-46 of HPr is replaced with an alanine, glucose had lost its inhibitory effect. In vitro experiments carried out with L. lactis vesicles had suggested that P-Ser-HPr is also implicated in inducer expulsion of nonmetabolizable homologues of PTS sugars, such as methylβ-d-thiogalactoside (TMG) and 2-deoxy-d-glucose (2-DG). In vivo experiments with theptsH1 mutant established that P-Ser-HPr is not necessary for inducer expulsion. Glucose-activated 2-DG expulsion occurred at similar rates in wild-type and ptsH1 mutant strains, whereas TMG expulsion was slowed in the ptsH1 mutant. It therefore seems that P-Ser-HPr is not essential for inducer expulsion but that in certain cases it can play an indirect role in this regulatory process.


1994 ◽  
Vol 60 (9) ◽  
pp. 3474-3478 ◽  
Author(s):  
Axel Hartke ◽  
Sandrine Bouche ◽  
Xavier Gansel ◽  
Philippe Boutibonnes ◽  
Yanick Auffray

Sign in / Sign up

Export Citation Format

Share Document