scholarly journals Analytical Methods and Finite Element Method Computation The dental - periodontal tissues response

2017 ◽  
Vol 54 (4) ◽  
pp. 777-780
Author(s):  
Cristina Bica ◽  
Krisztina Martha ◽  
Dorin Bica ◽  
Daniela Esianu ◽  
Madalina Nicoleta Matei

The study of the biomechanical behaviour of dental-periodontal structures during orthodontic movement has been carried out on the basis of the analysis of values of equivalent stress following Von Mises theory, of the stress after the direction of the sz vertical force, which constitutes the essential component of the Von Mises equivalent stress, as well as on the basis of registering the deformities on the tooth axis. The processes of implementation, modelling, calculation and interpretation, using FEM, involved the following steps: defining the geometry and the structure of the model under analysis; meshing the geometry of the structure; connecting the nodal elements; defining the limit conditions and restrictions; loading the created model with vertical forces of different intensities; solving the equation system, having as unknowns in the nodes the following: movement, tension, tension on the spatial coordinates, Von Mises stress. We simulated the orthodontic intrusion through the application of some vertical forces with different intensities and on structures with alveolar bone loss. The tension values in the tooth axis vary in direct proportion to the level of resorption of the alveolar bone, but the decisive element is the numerical value of the applied force, and not the absorption level.

Author(s):  
Shu Zheng ◽  
Daogang Lu ◽  
Qiong Cao ◽  
Chao Liu ◽  
Yunlong Ding ◽  
...  

The center measurement column lower head, which is under long-term influence of the liquid sodium, locates just above the core outlet in the fast reactor. Under the shutdown condition, the sudden drop of coolant temperature will cause the center measurement column lower head to be affected by the strong thermal shock that will threaten the integrity of the lower head. Cladding is always added to lower head to protect it from thermal shock damage. Therefore, the calculation and analysis of stress and fatigue damage for cladding is significant. Based on the built complete model and shutdown temperature curve of reactor core outlet, using ASME fatigue evaluation method, the stress and fatigue damage of thermal shock in cladding is calculated. And the influence of different layers of cladding on the von Mises equivalent stress distributions is analyzed in the paper. The results show that under a given shutdown curve, the maximum von Mises stress emerges at the joints of cladding and the sleeve. As the number of layers increases, the von Mises equivalent stress of each layer decreases. Due to the existence of thermal resistance, the von Mises equivalent stress has similar distributions between two designs of layer and different distributions between layers. The study can provide design reference on cladding for relevant engineering design.


2002 ◽  
Vol 124 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Shuguang Li ◽  
John Cook

This paper is concerned with the membrane shell analysis of filament overwound toroidal pressure vessels and optimum design of such pressure vessels using the results of the analysis by means of mathematical nonlinear programming. The nature of the coupling between overwind and linear has been considered based on two extreme idealizations. In the first, the overwind is rigidly coupled with the liner, so that the two deform together in the meridional direction as the vessel dilates. In the second, the overwind is free to slide relative to the linear, but the overall elongations of the two around a meridian are identical. Optimized designs with the two idealizations show only minor differences, and it is concluded that either approximation is satisfactory for the purposes of vessel design. Aspects taken into account are the intrinsic overwind thickness variation arising from the winding process and the effects of fiber pre-tension. Pre-tension can be used not only to defer the onset of yielding, but also to achieve a favorable in-plane stress ratio which minimizes the von Mises equivalent stress in the metal liner. Aramid fibers are the most appropriate fibers to be used for the overwind in this type of application. The quantity of fiber required is determined by both its short-term strength and its long-term stress rupture characteristics. An optimization procedure for the design of such vessels, taking all these factors into account, has been established. The stress distributions in the vessels designed in this way have been examined and discussed through the examples. A design which gives due consideration of possible mechanical damage to the surface of the overwind has also been addressed.


2016 ◽  
Vol 835 ◽  
pp. 97-102
Author(s):  
Liliana Porojan ◽  
Florin Topală ◽  
Sorin Porojan

Zirconia is an extremely successful material for prosthetic restorations, offering attractive mechanical and optical properties. It offers several advantages for posterior restorations because it can withstand physiological posterior forces. The aim of the study was to achieve the influence of zirconia framework thickness on the mechanical behavior of all-ceramic crowns using numerical simulation. For the study a premolar was chosen in order to simulate the mechanical behavior in the components of all-ceramic crowns and teeth structures regarding to the zirconia framework thickness. Maximal Von Mises equivalent stress values were recorded in teeth and restorations. Due to the registered maximal stress values it can be concluded that it is indicated to achieve frameworks of at least 0.5 mm thickness in the premolar area. Regarding stress distribution concentration were observed in the veneer around the contact areas with the antagonists, in the framework under the functional cusp and in the oral part overall and in dentin around and under the marginal line, also oral. The biomechanical behavior of all ceramic crowns under static loads can be investigated by the finite element method.


2019 ◽  
Vol 950 ◽  
pp. 200-204
Author(s):  
Guang Ping Zou ◽  
Nadiia Dergachova

This study presents the dynamic response analyze of a simply supported and isotropic functionally graded (FG) double curved panel under mechanical loading. The aim of the research was to investigate mechanical behavior in a FGM curved panel due to different excitation mode of dynamic loading. The novelty of this research is an investigation of von Mises equivalent stress distribution in double curved panel due to different excitation mode. Computed results are found to agree well with the results reported in the literature. Moreover, influence of volume fraction of the material is studied.


2020 ◽  
Vol 830 ◽  
pp. 53-58
Author(s):  
Yung Chang Cheng ◽  
Pongsathorn Pornteparak

The purpose of this paper focuses on adhesive layer strength while having a thermal cycling of honeycomb composite sandwich structure by using the uniform design of experiments method improving the von Mises stress of honeycomb structure. Three system parameters of the honeycomb structure are selected as the control factors to be improved. Uniform design of experiment is applied to create a set of simulation experiments. Applying ANSYS/Workbench software, the finite element modelling is investigated and the von Mises stress of the honeycomb structure is calculated under metal-honeycomb core flatwise tensile test. From the numerical results, the best honeycomb structure dimension of all the experiments which causes the smaller von Mises stress is selected as the improved version of design. Finally, the best model of the experiments which causes the minimum equivalent stress is regarded as the improved version of design. Compared with the original design, the result of ASTM C297 improved version is 17.386 MPa, which mean improved 36.28%, ASTM C364 improved version is 19.015 MPa, which mean improved 25.26%, ASTM C365 improved version is 16.86 MPa, which mean improved 12.35%.


2010 ◽  
Vol 135 ◽  
pp. 337-342
Author(s):  
Li Zhou ◽  
Shu Tao Huang ◽  
Li Fu Xu

A new composite polishing plate for polishing of CVD diamond films has been designed. The displacement and stress distributions of the high speed rotation polishing plate have been investigated due to centrifugal forces, and the polishing mechanism of super-high polishing has been analyzed by using X-ray photo-electron spectroscopy. The results showed that the displacements both in axial and radial increase with the increasing of the rotational speed. When the rotation speed reached to 1200 rad/s, the von Mises equivalent stress is about 242 MPa, which is safe for the composite polishing plate. Additional, the polishing mechanism is mainly the chemical reaction between carbon and titanium during the super-high speed polishing. At elevated temperature, the chemical reaction between oxygen and titanium, oxygen and carbon can also occur.


Author(s):  
MR Karamooz-Ravari ◽  
R Dehghani

Nowadays, NiTi rotary endodontic files are of great importance due to their flexibility which enables the device to cover all the portions of curved canal of tooth. Although this class of files are flexible, intracanal separation might happen during canal preparation due to bending or torsional loadings of the file. Since fabrication and characterization of such devices is challenging, time-consuming, and expensive, it is preferable to predict this failure before fabrication using numerical models. It is demonstrated that NiTi shape memory alloy shows asymmetric material response in tension and compression which can significantly affect the lifetime of the files fabricated from. In this article, the effects of this material asymmetry on the bending response of rotary files are assessed using finite element analysis. To do so, a constitutive model which takes material asymmetry into account is used in combination with the finite element model of a RaCe file. The results show that the material asymmetry can significantly affect the maximum von Mises equivalent stress as well as the force–displacement response of the tip of this file.


Author(s):  
Dinu Thomas Thekkuden ◽  
Abdel-Hamid I. Mourad ◽  
Abdel-Hakim Bouzid

Abstract The stress corrosion cracking of tube-to-tubesheet joints is one of the major faults causing heat exchanger failure. After the expansion process, the stresses are developed in a plastically deformed tube around the tube-to-tubesheet joint. These residual stressed joints, exposed to tube and shell side fluids, are the main crack initiation sites. Adequate contact pressure at the tube-to-tubesheet interface is required to produce a quality joint. Insufficient tube-to-tubesheet contact pressure leads to insufficient joint strength. Therefore, a study on the residual stress and contact pressure that have a great significance on the quality of the tube-to-tubesheet joint is highly demanded. In this research, a 2D axisymmetric numerical analysis is performed to study the effect of the presence of grooves in the tubesheet and the expansion pressure length on the distribution of contact pressure and stress during loading and unloading of 400 MPa expansion pressure. The results show that the maximum contact pressure is independent of the expansion pressure length. However, the presence of grooves significantly increased the maximum contact pressure. It is proven that the presence of grooves in the tubesheet is distinguishable from the maximum contact pressure and residual von mises equivalent stress. The tube pull-out strength increases with the expansion pressure and the number of grooves. In conclusion, the presence of the grooves affects the tube-to-tubesheet joints.


Author(s):  
Li Sun ◽  
Jianchun Fan ◽  
Xing Meng ◽  
Ximing Zhang ◽  
Yuting Sun ◽  
...  

Corrosion and sustained casing pressure have serious threats to the integrity of tubing of gas well. Researching the residual strength of corroded tubing has great significance to ensure the safety of gas well. The finite element method was used to study the relationships between residual strength and corrosion defects size, internal pressure, external pressure, axial load. The results show that, for tubing with uniform corrosion, the defect depth, internal pressure and external pressure have greater impacts on the von Mises equivalent stress of tubing, and the defect width and defect length have little effects on it. For tubing with pitting corrosion, the defect depth, internal pressure and external pressure have greater impacts on the von Mises equivalent stress of tubing, while the defect radius has little effect on it. These simulation data were fitted into the functions of residual strength of corroded tubing according to different corrosion morphology types. Both of the verifications of the fitting results show that most of the error between the original calculation data and the fitting calculation data is less than 4%. The fitting formulas can be used conveniently to evaluate the safety of the tubing of gas well with sustained casing pressure.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Neelambar Kaipatur ◽  
Yuchin Wu ◽  
Samer Adeeb ◽  
Thomas Stevenson ◽  
Paul Major ◽  
...  

The aim of this animal study was to develop a model of orthodontic tooth movement using a microimplant as a TSAD in rodents. A finite element model of the TSAD in alveolar bone was built usingμCT images of rat maxilla to determine the von Mises stresses and displacement in the alveolar bone surrounding the TSAD. Forin vivovalidation of the FE model, Sprague-Dawley rats (n=25) were used and a Stryker 1.2 × 3 mm microimplant was inserted in the right maxilla and used to protract the right first permanent molar using a NiTi closed coil spring. Tooth movement measurements were taken at baseline, 4 and 8 weeks. At 8 weeks, animals were euthanized and tissues were analyzed by histology and EPMA. FE modeling showed maximum von Mises stress of 45 Mpa near the apex of TSAD but the average von Mises stress was under 25 Mpa. Appreciable tooth movement of 0.62 ± 0.04 mm at 4 weeks and 1.99 ± 0.14 mm at 8 weeks was obtained. Histological and EPMA results demonstrated no active bone remodeling around the TSAD at 8 weeks depicting good secondary stability. This study provided evidence that protracted tooth movement is achieved in small animals using TSADs.


Sign in / Sign up

Export Citation Format

Share Document