scholarly journals Influence of Alumina Nanoparticles on the Mechanical Properties of a Bioresin Composite

2021 ◽  
Vol 58 (2) ◽  
pp. 229-236
Author(s):  
Ion Ciuca ◽  
Oleg Solomon ◽  
Camelia Ana Grigore ◽  
Lucretia Anghel ◽  
Iulian Constantin ◽  
...  

A significant part of the research and production activities is represented in the field of bioengineering by the biomaterials used in hard tissue restorations. They are of great interest in dental science, intending to improve technological aspects, monitoring their biological responses to the living organisms, but also to redesign economic aspects, beginning with the choice of raw materials. In the present work, light-curing composite biomaterials were made from a composite polymer matrix consisting of specific concentrations of bisphenol A-glycidyl methacrylate base monomer (Bis-GMA), a mixture of two co-monomers, triethylene glycol dimethacrylate and ethoxylated bisphenol A-dimethacrylate (TEGDMA/BisEMA), and two alumina nanopowder concentrations (5 wt.% and 10 wt.%). These materials were mechanically tested for flexural strength and compressive strength. The structural analysis of these materials consisted of SEM microscopy and EDX elementary mapping. In order to extract 3D projections of sample surfaces, but also to produce indicative values of their roughness, the SEM micrographs were processed with open-source software. In order to observe a clear evolution of the mentioned properties, the composite biomaterials were compared with materials formed only with the Bis-GMA/TEGDMA/BisEMA composite, and with a commercial composite resin, Filtek™ Supreme Ultra Universal Restorative, also. The findings showed an increase in the mechanical properties of the materials manufactured concerning the concentration of nanoparticles of aluminum. EDX analyzes confirmed the good homogeneity of nanoparticles in the polymer matrix. Mechanical properties of the manufactured nanocomposite biomaterials were reported 28.8 % higher than the control biomaterial. The comparison results with the commercial resin composite are encouraging.

2012 ◽  
Vol 252 ◽  
pp. 224-227
Author(s):  
Bi Wu Huang ◽  
Kuan Zhou ◽  
Chong Deng ◽  
Wei Qing Chen

RPSL-02 type photosensitive resin for stereolithography material was prepared with 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexanecarboxylate (UVR 6110), bisphenol A type epoxy diacrylate (EA-612), trimethyolpropane triacrylate (TMPTA), polycaprolactone polyol (polyol-0301), triethylene glycol divinyl ether (DVE-3), benzil dimethyl ketal (Irgacure651) and a mixture of triarylsulfonium hexafluoroantimonate salts (UVI-6976) as raw materials. Some properties of the photosensitive resin were investigated. The viscosity of the photosensitive resin at 30°C was 395mPa.S, The glass transition temperature (Tg ) of the UV-cured specimen was 52°C, and the weight loss of the UV-cured specimen at 200°C was less than 5%. The photosensitive resin and its UV-cured specimen were also characterized by infrared (IR).


2018 ◽  
Vol 22 ◽  
pp. 1-9 ◽  
Author(s):  
Syed Sajid Ali Shah ◽  
Habib Nasir ◽  
Noaman Ul-Haq

Polymer matrix plays a crucial role in the development of advanced light weight composite materials, and is mainly responsible for thermal and mechanical properties. These polymer matrices are usually thermosetting plastics due to their ease of processing. Thermoset resins were prepared using different compositions of dicyanate ester of bisphenol A and polyether imide and carbon fiber laminates were prepared by wet layup technique. Small amount of epoxy (diglycidyl ether of bisphenol A) was also added to the composites to improve the (interfacial) bonding between the carbon fiber and the resin. The Copper (II) oxalate with 1,5-pentanediol was used as a catalyst for the first time to reduce the curing time from eight hours to four hours. The catalyst has also reduced the curing temperature from 400°C to 250°C. The catalyst Copper (II) oxalate is commercially available. The plasticizer has improved the thermal and mechanical properties of the matrix significantly. The addition of epoxy to the thermoset resin improved the (interfacial) bonding between the resin and carbon fiber. FTIR results suggest that the polymerization reaction of dicyanate results in the formation of trizine ring with phenolic group. SEM results show the interaction of bisphenol A dicyanate (BPADCy) monomer to form polymer matrix. SEM images also represent a uniform anchoring of matrix on the individual carbon filament. It is clear from thermal analysis that sample having 85% BPADCy and 15% polyetherimide (BPR-2) shows the greater thermal stability which is due to the reaction of epoxy with cyanate matrix.


2011 ◽  
Vol 287-290 ◽  
pp. 386-389 ◽  
Author(s):  
Bi Wu Huang ◽  
Zi Xiang Weng ◽  
Shi Min Liu ◽  
Wei Qing Chen

RPSL-01 type photosensitive resin for Stereolithography was prepared with 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexanecarboxylate (UVR 6110), bisphenol A type epoxy diacrylate (EA-612), tripropylene glycol diacrylate (TPGDA), pentaerythritol triacrylate(PETA), triethylene glycol divinyl ether (DVE-3), benzil dimethyl ketal (Irgacure651) and a mixture of triarylsulfonium hexafluoroantimonate salts (UVI-6976) as raw materials. Some properties of the photosensitive resin were investigated. The viscosity of the photosensitive resin at 30°C was 425mPa.S, The glass transition temperature (Tg ) of the UV-cured specimen was 47°C, and the weight loss of the UV-cured specimen at 200°C was less than 5%. The photosensitive resin and its UV-cured specimen were also characterized by infrared (IR).


2018 ◽  
Vol 69 (5) ◽  
pp. 1272-1275 ◽  
Author(s):  
Camelia Tecu ◽  
Aurora Antoniac ◽  
Gultekin Goller ◽  
Mustafa Guven Gok ◽  
Marius Manole ◽  
...  

Bone reconstruction is a complex process which involves an osteoconductive matrix, osteoinductive signaling, osteogenic cells, vascularization and mechanical stability. Lately, to improve the healing of the bone defects and to accelerate the bone fusion and bone augmentation, bioceramic composite materials have been used as bone substitutes in the field of orthopedics and dentistry, as well as in cosmetic surgery. Of all types of bioceramics, the most used is hydroxyapatite, because of its similar properties to those of the human bone and better mechanical properties compared to b-tricalcium phosphate [1]. Currently, the most used raw materials sources for obtaining the hydroxyapatite are: bovine bone, seashells, corals, oyster shell, eggshells and human teeth. There are two common ways to obtain hydroxyapatite: synthetically and naturally. Generally, for the improvement of the mechanical properties and the structural one, hydroxyapatite is subjected to the sintering process. Considering the disadvantages of hydroxyapatite such as poor biodegradation rate, b-TCP has been developed, which has some disadvantages too, such as brittleness. For this reason, the aim of this study is to look into the effect of adding magnesium oxide on the sintering behavior, the structure and the mechanical properties of the hydroxyapatite-tricalcium phosphate composites.


2021 ◽  
Vol 2 (2) ◽  
pp. 419-430
Author(s):  
Ankur Bajpai ◽  
James R. Davidson ◽  
Colin Robert

The tensile fracture mechanics and thermo-mechanical properties of mixtures composed of two kinds of epoxy resins of different chemical structures and functional groups were studied. The base resin was a bi-functional epoxy resin based on diglycidyl ether of bisphenol-A (DGEBA) and the other resins were (a) distilled triglycidylether of meta-amino phenol (b) 1, 6–naphthalene di epoxy and (c) fluorene di epoxy. This research shows that a small number of multifunctional epoxy systems, both di- and tri-functional, can significantly increase tensile strength (14%) over neat DGEBA while having no negative impact on other mechanical properties including glass transition temperature and elastic modulus. In fact, when compared to unmodified DGEBA, the tri-functional epoxy shows a slight increase (5%) in glass transition temperature at 10 wt.% concentration. The enhanced crosslinking of DGEBA (90 wt.%)/distilled triglycidylether of meta-amino phenol (10 wt.%) blends may be the possible reason for the improved glass transition. Finally, the influence of strain rate, temperature and moisture were investigated for both the neat DGEBA and the best performing modified system. The neat DGEBA was steadily outperformed by its modified counterpart in every condition.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2817
Author(s):  
Biao Yu ◽  
Jingwei He ◽  
Sufyan Garoushi ◽  
Pekka K. Vallittu ◽  
Lippo Lassila

In order to improve the toughness and reduce polymerization shrinkage of traditional bisphenol A-glycidyl methacrylate (Bis-GMA)/triethylene glycol dimethacrylate (TEGDMA) based dental resin system, a hyperbranched thiol oligomer (HMDI-6SH) was synthesized via thiol-isocyanate click reaction using pentaerythritol tetra(3-mercaptopropionate (PETA) and dicyclohexylmethane 4,4′-diisocyanate (HMDI) as raw materials. Then HMDI-6SH was mixed with 1,3,5-Triallyl-1,3,5-Triazine-2,4,6(1H,3H,5H)-Trione (TTT) to prepare thiol-ene monomer systems, which were added into Bis-GMA/TEGDMA resins with different mass ratio from 10 wt% to 40 wt% to serve as anti-shrinking and toughening agent. The physicochemical properties of these thiol-ene-methacrylate ternary resins including functional groups conversion, volumetric shrinkage, flexural properties, water sorption, and water solubility were evaluated. The results showed that the incorporation of HMDI/TTT monomer systems into Bis-GMA/TEGDMA based resin could improve C=C double bond conversion from 62.1% to 82.8% and reduced volumetric shrinkage from 8.53% to 4.92%. When the mass fraction of HMDI/TTT monomer systems in the resins was no more than 20 wt%, the flexural strength of the resin was higher or comparable to Bis-GMA/TEGDMA based resins (p > 0.05). The toughness (it was measured from the stress–strain curves of three-point bending test) of the resins was improved. Water sorption and water solubility tests showed that the hydrophobicity of resin was enhanced with increasing the content of thioester moiety in resin.


Sign in / Sign up

Export Citation Format

Share Document