The Influence of Some Factors on Spirolactone Stability in Solution

2008 ◽  
Vol 59 (7) ◽  
Author(s):  
Daniela Lucia Muntean ◽  
Silvia Imre ◽  
Cosmina Voda

The influence of some factors on spironolactone stability in solution was studied, by applying high-performance liquid chromatography, as a part of a pharmaceutical preformulation study in order to obtain a spironolactone solution for alopecia treatment. Solutions of 1 mg/ml spironolactone in aqueous ethanolic solution 1 : 1 and in 20 mM cyclodextrines solutions (b-, hydroxi-b- and methyl-b-cyclodextrine) was used, maintained at 8 and 22 �C, protected from light and after UV irradiation at 254 nm. The main degradation products were 7a-thiospirolactone and canrenone. The most stable solutions were the alcoholic ones and with methyl-beta-cyclodextrine, but the simultaneous action of temperature and UV irradiation allowed degradation processes after one hour of exposure, more aggressive in the presence of methyl-beta-cyclodextrine. In conclusion, for alopecia treatment with spironolactone a 1 mg/mL ethanolic solution could be used and it is recommendable the protection of treated zone.

2006 ◽  
Vol 89 (6) ◽  
pp. 1552-1556
Author(s):  
ArmaĞan Önal ◽  
Olcay SaĞiri ◽  
S Müge Çetin ◽  
Sidika Toker

Abstract Reboxetine is used as a selective noradrenaline reuptake inhibitor for the treatment of major depressive disorders. It is effective in the treatment of severe depression and safer to use than traditional tricyclic antidepressants. In this study, a novel, simple, and rapid stability-indicating high-performance liquid chromatography (HPLC) method for reboxetine methansulfonate was successfully developed and validated for the assay of tablets. The method was used to quantify reboxetine in tablets; it employed a C18 column (150 4.6 mm id) with an isocratic mobile phase consisting of methanolphosphate buffer (pH 7, 0.02 M; 55 + 45, v/v) at a flow rate of 1.0 μmL/min. Reboxetine was detected by an ultraviolet detector at 277 nm. The retention time of reboxetine was about 4.5 min. The developed HPLC method was validated with respect to linearity, precision, sensitivity, accuracy, and selectivity. The method was linear over the concentration range 150 g/mL (r 0.9999). The limits of detection and the quantitation of reboxetine were 0.1 and 0.3 μg/mL, respectively. The relative standard deviation values for intraday and interday precision were 0.781.01 and 1.081.37%, respectively. Selectivity was validated by subjecting a stock solution of reboxetine to neutral, acid, and alkali hydrolysis, as well as oxidation, dry heat treatment, and photodegradation. The peaks of the degradation products did not interfere with the peak of reboxetine. The results indicated that the proposed method could be used in a stability assay. The proposed method was successfully applied to the determination of reboxetine in tablets. Excipients present in the tablets did not interfere with the analysis.


2020 ◽  
Vol 75 (3-4) ◽  
pp. 75-86
Author(s):  
Taiji Nomura ◽  
Yasuo Kato

AbstractTuliposides (Pos) are major defensive secondary metabolites in tulip (genus Tulipa), having 4-hydroxy-2-methylenebutanoyl and/or (3S)-3,4-dihydroxy-2-methylenebutanoyl groups at the C-1 and/or C-6 positions of d-glucose. The acyl group at the C-6 position is converted to antimicrobial lactones, tulipalins, by tuliposide-converting enzymes (TCEs). In the course of a survey of tulip tissue extracts to identify novel Pos, we found a minute high-performance liquid chromatography peak that disappeared following the action of a TCE, and whose retention time differed from those of known Pos. Spectroscopic analyses of the purified compound, as well as its enzymatic degradation products, revealed its structure as 5″-O-(6-O-(4′-hydroxy-2′-methylenebutanoyl))-β-d-glucopyranosyl-(2″R)-2″-hydroxymethyl-4″-butyrolactone, which is a novel glucoside ester-type Pos. We gave this compound the trivial name ‘tuliposide G’ (PosG). PosG accumulated in bulbs, at markedly lower levels than 6-PosA (the major Pos in bulbs), but was not found in any other tissues. Quantification of PosG in bulbs of 52 types of tulip, including 30 cultivars (Tulipa gesneriana) and 22 wild Tulipa spp., resulted in the detection of PosG in 28 cultivars, while PosG was present only in three wild species belonging to the subgenus Tulipa, the same subgenus to which tulip cultivars belong, suggesting the potential usefulness of PosG as a chemotaxonomic marker in tulip.


2021 ◽  
Author(s):  
Bobbi Stromer ◽  
Rebecca Crouch ◽  
Katrinka Wayne ◽  
Ashley Kimble ◽  
Jared Smith ◽  
...  

Standard methods are in place for analysis of 17 legacy munitions compounds and one surrogate in water and soil matrices; however, several insensitive munition (IM) and degradation products are not part of these analytical procedures. This lack could lead to inaccurate determinations of munitions in environmental samples by either not measuring for IM compounds or using methods not designed for IM and other legacy compounds. This work seeks to continue expanding the list of target analytes currently included in the US Environmental Protection Agency (EPA) Method 8330B. This technical report presents three methods capable of detecting 29 legacy, IM, and degradation products in a single High Performance Liquid Chromatography (HPLC) method with either ultraviolet (UV)-visible absorbance detection or mass spectrometric detection. Procedures were developed from previously published works and include the addition of hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX); hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX); hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX); 2,4-diamino-6-nitrotoluene (2,4-DANT); and 2,6-diamino-4-nitrotoluene (2,6-DANT). One primary analytical method and two secondary (confirmation) methods were developed capable of detecting 29 analytes and two surrogates. Methods for high water concentrations (direct injection), low-level water concentrations (solid phase extraction), soil (solvent extraction), and tissue (solvent extraction) were tested for analyte recovery of the new compounds.


Sign in / Sign up

Export Citation Format

Share Document