scholarly journals Overview of the Conversion of Traditional Power Grid to Internet Energy

2020 ◽  
Vol 8 (4) ◽  
pp. 36-39
Author(s):  
Vugar Abdullayev ◽  
Ranjeet Pratap Singh Bhadouria

In the information society, no human activity stands still, including the electric power industry. As a result, there has been a shift from a traditional grid architecture to a new information and communication technology architecture. The object of the study of this article is a smart power supply system. The purpose of the study is to consider problems for implementing the concepts of "Smart Grid" and "Internet of energy." To do this, a brief overview was made of the traditional electricity supply system, as well as promising renewable energy sources and its promising directions. In order for several RSE to exist in the same power grid without any problems, it is necessary to use energy routers that are able to connect several power grids operating on different sources. The received system monitor by the power grid management systems (SCADA, distributed control system). There are also discussed the SCADA tasks and features. The above all leads to the implementation of two innovative concepts in the field of energy: Smart Grid and Internet energy.

2021 ◽  
Vol 288 ◽  
pp. 01003
Author(s):  
Saken Koyshybaevich Sheryazov ◽  
Sultanbek Sansyzbaevich Issenov ◽  
Ruslan Maratbekovich Iskakov ◽  
Argyn Bauyrzhanuly Kaidar

The paper describes special aspects of using the wind power plants (wind turbines) in the power grid. The paper provides the classification and schematic presentation of AC wind turbines, analyzes the role, place and performance of wind power plants in Smart Grid systems with a large share of renewable energy sources. The authors also reviews a detailed analysis of existing AC wind turbines in this paper. Recommendations are given for how to enhance the wind power plants in smart grids in terms of reliability, and introduce the hardware used in the generation, conversion and interface systems into the existing power grid. After the wind power plants had been put online, the relevance of the Smart Grid concept for existing power grids was obvious. The execution of such projects is assumed to be financially costly, requires careful study, and development of flexible algorithms, but in some cases this may be the only approach. The analysis of using wind turbines shows that the structural configuration of wind power plants can be based on the principles known in the power engineering. The approaches may differ, not fundamentally, but in engineering considerations. it is necessary to point out that the method of controlling dual-power machines is quite comprehensive so that their wide use will face operational problems caused by the lack of highly professional specialists in electric drives. Therefore, it seems advisable to use square-cage asynchronous generators in wide applications. The paper shows that as the renewable energy sources are largely used in power grids, there is an issue of maintaining the power generation at a required level considering the variability of incoming wind energy. This results in the malfunctions in the operation of relay protection devices and emergency control automatics (RP and ECA), and the complicated control. Also, the standards of the CIS countries and regulatory documents miss the requirements for the wind turbine protections, taking into account their specialty causing the inefficient standard protective logic, which does not work correctly in a number of abnormal and emergency operating modes, and especially Smart Grid in power grids.


2015 ◽  
Vol 2 ◽  
pp. 45
Author(s):  
Biao Wang

<p>With an increasing number of distributed renewable energy sources and higher requirements on the efficiency, reliability and security of existing power grid, Smart Grid is regarded as a significant evolution to the electric system. This paper mainly discusses the communication technologies applied in power grid from two aspects: cable technology and wireless technology. The former, such as DSL and PLC, is expensive, but it has broad deployment capability, strong communication capability, reliability and security. The latter could save the cost of installation, but it has limitation on bandwidth and security problems. In the future, grid features, system architecture, critical components, pilot projects of smart grid and its application and challenges after integrating with information and communication technology will be further discussed.</p>


Author(s):  
Saurav Biswas

Smart grid technology has been recognized as a promising solution for the next-generation energy efficient electric power systems to mitigate energy crisis. Smart grid provides highly consistent and reliable services, efficient energy management practices, smart metering integration, automation and precision decision support systems and self-healing facilities. The smart power grid introduces a sensing, monitoring, and control system that provides end users with the cost of energy at any moment through real-time pricing. The classical power system operation has no control over the loads except in an emergency situation when a portion of the loads can be dropped as needed to balance the power grid generation with its loads. Furthermore, the smart power grid supplies the platform for the use of renewable energy sources that acts as a safeguard against a complete blackout of the interconnected power grid. In this work, all the concepts involved in smart grid mechanism is implemented with PIC18F452 microcontroller and other supplementary components. A solar module with storage capacity is connected to the proposed system for minimizing grid energy consumption and plays a primary energy source for maximum utilization of green energy. This intelligent device may inherently reduce the consumption of electrical energy during peak hours and allow consumers to sell back electricity into grid using bi-directional technique. Barriers, challenges, benefits and future trends regarding the technologies and the role of users have also been discussed in this paper.


Author(s):  
Girish Neelakanta Iyer ◽  
Ganesh Neelakanta Iyer

The network is created through a mixture of IT, communication technology and electrical power systems. The smart grid means it is “smarter” in the sense it has its own intelligence hence a smarter power grid. The generated resources are being decentralized by the smart power grids. The major challenges with the smart grid include huge number of smart meters. Due to the large traffic and limited bandwidth, scheduling is very important. Traditional algorithms will maximize the throughput or minimize the average delay may not be valid in smart grid. Power grid plays an important role in datacenters which forms the backbone for the cloud computing infrastructure. The cloud computing and smart grid interacts through the datacenters. The load balancing and robustness can be achieved through this datacenter and cloud system. Many cloud computing features help to achieve this load balancing.


2019 ◽  
pp. 123-128 ◽  
Author(s):  
Maksim V. Demchenko ◽  
Rostislav O. Ruchkin ◽  
Eugenia P. Simaeva

The article substantiates the expediency of improving the legal support for the introduction and use of energy-efficient lighting equipment, as well as smart networks (Smart Grid), taking into account the ongoing digitalization of the Russian economy and electric power industry. The goal of scientific research is formulated, which is to develop practical recommendations on optimization of the public relations legal regulation in the digital power engineering sector. The research methodology is represented by the interaction of the legal and sociological aspects of the scientific methods system. The current regulatory and legal basis for the transformation of digital electricity relations has been determined. The need to modernize the system of the new technologies introduction legal regulation for generation, storage, transmission of energy, intelligent networks, including a riskbased management model, is established. A set of standardsetting measures was proposed to transform the legal regulation of public relations in the field of energyefficient lighting equipment with the aim of creating and effectively operating a single digital environment, both at the Federal and regional levels. A priority is set for the development of “smart” power grids and highly efficient power equipment in the constituent entities of the Russian Federation through a set of legal, economic (financial), edu cational measures.


Author(s):  
Uttam Ghosh ◽  
Pushpita Chatterjee ◽  
Sachin Shetty

Software-defined networking (SDN) provides flexibility in controlling, managing, and dynamically reconfiguring the distributed heterogeneous smart grid networks. Considerably less attention has been received to provide security in SDN-enabled smart grids. Centralized SDN controller protects smart grid networks against outside attacks only. Furthermore, centralized SDN controller suffers from a single point of compromise and failure which is detrimental to security and reliability. This chapter presents a framework with multiple SDN controllers and security controllers that provides a secure and robust smart grid architecture. The proposed framework deploys a local IDS to provide security in a substation. Whereas a global IDS is deployed to provide security in control center and overall smart grid network, it further verifies the consequences of control-commands issued by SDN controller and SCADA master. Performance comparison and simulation result show that the proposed framework is efficient as compared to existing security frameworks for SDN-enabled smart grids.


2022 ◽  
pp. 1028-1046
Author(s):  
Uttam Ghosh ◽  
Pushpita Chatterjee ◽  
Sachin Shetty

Software-defined networking (SDN) provides flexibility in controlling, managing, and dynamically reconfiguring the distributed heterogeneous smart grid networks. Considerably less attention has been received to provide security in SDN-enabled smart grids. Centralized SDN controller protects smart grid networks against outside attacks only. Furthermore, centralized SDN controller suffers from a single point of compromise and failure which is detrimental to security and reliability. This chapter presents a framework with multiple SDN controllers and security controllers that provides a secure and robust smart grid architecture. The proposed framework deploys a local IDS to provide security in a substation. Whereas a global IDS is deployed to provide security in control center and overall smart grid network, it further verifies the consequences of control-commands issued by SDN controller and SCADA master. Performance comparison and simulation result show that the proposed framework is efficient as compared to existing security frameworks for SDN-enabled smart grids.


2018 ◽  
Vol 239 ◽  
pp. 01010 ◽  
Author(s):  
Evgeny Tretyakov

The relevance of the work is determined by the need to improve the electrical distribution grids of railways on the basis of digital technologies. The article presents advanced methods of transportation and distribution of electric power in smart power grids of railways based on multi-agent control. The analysis of the power supply system for stationary railroad consumers was performed and advanced ways of their development were defined. These methods should provide increased speed, adaptive determination of restrictions on using electric power equipment, management of mode parameters, sectioning and power flow modes in electrical distribution grids, restoration of power supply after emergency events. The method of adaptive control of transportation and distribution of electric energy in the power supply system of stationary railway consumers is developed based on the hierarchical structure of IEC 61850. This method takes into account the coordination of managing and local controllers in the data exchange environment, the control results and the variable area of responsibility of controllers and their division according to their functional purpose based on the multi-agent approach. The method of power flow control was developed to reduce power losses, increase the capacity of transport channels and ensure the restoration of the normal mode of the electric network by reconfiguring it and controlling active elements based on graph theory. The method takes into account the expected daily load curve, limits on the demand for capacity by active consumers and the possibility of a closed mode of electrical network operation through controlled cross-sections. The simulation results presented on the test circuit have showed the feasibility and efficiency of the proposed approaches.


2022 ◽  
pp. 60-94
Author(s):  
Khaled Dassa ◽  
Abdelmadjid Recioui

The smart grid is the aggregation of emerging technologies in both hardware and software along with practices to make the existing power grid more reliable and ultimately more beneficial to consumers. The smart grid concept is associated with the production of electricity from renewable energy sources (RES). For the distant isolated regions, microgrids (MG) with RES are offering a suitable solution for remote and isolated region electrification. The improper sizing would lead to huge investment cost which could have been avoided. The objective of this chapter is to review the state-of-the-art studies on the use of optimization techniques to renewable energy design and sizing. The chapter reviews the optimization techniques employed at different components of the microgrid including the energy sources, storage elements, and converters/inverters with their control systems.


Author(s):  
Shouvik Kumar Samanta ◽  
Chandan Kumar Chanda

<p>Though the number of traditional literature reviews most of the researchers in this area have concluded that modern intelligent electric network a referred standard new model which is considering for proposed power flow model analysis of Smart power grid vulnerability through composite network. By the theorem of Max-Flow and complex power network theorems that are represented the advance vulnerability indices for pick out endangered lines of the smart grid network. In other hand, the power flow model and existing models simulation are examined on the IEEE 39-bus test model. The results of the simulation introduced that the proposed concept of grid model, estimation and the index application are more adequate in smart grid weakness power and efficiency analysis. In this paper briefly summarize the methods and probabilities of a vulnerability index which was explained in specific in references. Therefore, it is imperative to further implement new models and new tools so as to reach the novel state and moderate the huge or massive potential shutoff.</p>


Sign in / Sign up

Export Citation Format

Share Document