scholarly journals Alcoholic Hepatotoxicity Inhibitory Effect Using Heat-Killed Lactic Acid Bacteria

2021 ◽  
Vol 50 (12) ◽  
pp. 1265-1274
Author(s):  
Hyo-Seok Chae ◽  
Hyang Hyun Cho ◽  
Woo Seung Song ◽  
Kwontack Hwang
LWT ◽  
2001 ◽  
Vol 34 (4) ◽  
pp. 239-243 ◽  
Author(s):  
Erika Trauth ◽  
Jean-Paul Lemaı̂tre ◽  
Christine Rojas ◽  
Charles Diviès ◽  
Rémy Cachon

Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 268
Author(s):  
Wei-Kuang Lai ◽  
Ying-Chen Lu ◽  
Chun-Ren Hsieh ◽  
Chien-Kei Wei ◽  
Yi-Hong Tsai ◽  
...  

Lactic acid bacteria have functions in immunoregulation, antagonism, and pathogen inhibition. The purpose of this study was to evaluate the effectiveness of lactic acid bacteria (LAB) in countering oral pathogens and develop related products. After a series of assays to 450 LAB strains, 8 heat-inactivated strains showed a strong inhibitory effect on a caries pathogen, Streptococcus mutans, and 308 heat-inactivated LAB strains showed a strong inhibitory effect on a periodontal pathogen, Porphyromonas gingivalis. The key reasons for inhibiting oral pathogens were bacteriocins produced by LAB and the coaggregation effect of the inactivated cells. We selected Lacticaseibacillus (Lb) paracasei 111 and Lb.paracasei 141, which had the strongest inhibitory effects on the above pathogens, was the main oral health food source. The optimal cultural conditions of Lb. paracasei 111 and Lb. paracasei 141 were studied. An oral tablet with a shelf life of 446 days made of the above strains was developed. A 40 volunteers’ clinical study (CSMUH IRB number: CS05065) was conducted with this tablet in the Periodontological Department of the Stomatology Research Center, Affiliated Hospital of Chung Shan Medical University (Taiwan). After 8 weeks of testing, 95% and 78.9% of patients showed an effect on reducing periodontal pathogens and improving probing pocket depth, respectively, in the oral tablet group.


2007 ◽  
Vol 70 (6) ◽  
pp. 1518-1522 ◽  
Author(s):  
V. B. SUÁREZ ◽  
M. L. CAPRA ◽  
M. RIVERA ◽  
J. A. REINHEIMER

The capacity of three phosphates to interrupt the lytic cycle of four specific autochthonal bacteriophages of lactic acid bacteria used as starters was assayed. The phosphates used (polyphosphates A and B and sodium tripolyphosphate–high solubility [TAS]) were selected on the basis of their capacity to sequester divalent cations, which are involved in the lytic cycle of certain bacteriophages. The assays were performed in culture media (deMan Rogosa Sharpe and Elliker broths) and reconstituted (10%, wt/vol) commercial skim milk to which phosphates had been added at concentrations of 0.1, 0.3, and 0.5% (wt/vol). Phosphate TAS was the most inhibitory one, since it was able to inhibit the lytic cycle of all bacteriophages studied, in both broths and milk. In broth, polyphosphates A and B inhibited the lytic cycle of only two bacteriophages at the maximal concentration used (0.5%), whereas in milk, they were not capable of maintaining the same inhibitory effect.


2021 ◽  
Vol 51 (2) ◽  
Author(s):  
Fernanda Cristina Kandalski Bortolotto ◽  
Maria Helena da Rosa Farfan ◽  
Nathalia Cristina Kleinke Jede ◽  
Gabriela Maia Danielski ◽  
Renata Ernlund Freitas de Macedo

ABSTRACT: Sausages are highly susceptible to microbial spoilage. Lactic acid bacteria (LAB) is the main group of spoilage bacteria in vacuum packed cooked sausages. To control microbial growth natural antimicrobials have been used as food preservatives. The aim of this study was to identify strains of lactic acid bacteria isolated from spoiled commercial Calabresa sausages and use them in an in vitro challenge with the natural antimicrobials, nisin (NI) and ε-poly-L-lysine (ε-PL). Mass spectrometry identification of LAB isolated from sausages using MALDI-TOF revealed a predominance of L. plantarum in the LAB population. RAPD-PCR of L. plantarum strains showed four different genetic profiles. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of NI and ε-PL, alone and in combination, against a pool of different profiles L. plantarum were determined. MIC of NI and ε-PL were 0.468 mg/ L and 75 mg/ L; respectively, whereas MBC of NI and ε-PL were 12.48 mg/L and 150 mg/L, respectively. The combined effect of NI and ε-PL was determined using concentrations at 1/4 and 1/8 of individual MICs. Synergistic effect was confirmed at both concentrations showing a fractional inhibitory concentration index of 0.5 and 0.2, respectively. The combination of NI and ε-PL at a small concentration of 0.05 mg/L and 9.375 mg/L, respectively, showed inhibitory effect towards spoilage L. plantarum Results show the potential of the combined use of NI and ε-PL to control sausage spoilage-associated with lactobacilli.


2015 ◽  
Vol 12 (3) ◽  
pp. 479-484
Author(s):  
Baghdad Science Journal

In this study Candida speices was diagnosed in 26 swab samples from patients with denture stomatitis , investigates the antagonism activity of Lactobacillus was investigated against the yeast of Candida albicans in vitro.Results revealed that The inhibition effect of Lactic Acid Bacteria against C.albicans was examined in solid medium, L.plantarum gave higher inhibition average 11mm followed by L.acidophillus with average 9 mm and, L.fermentum , L.casei with averages 7 mm. Whereas the filtrates, the highest inhibition zone were 20 and 16 mm by L. plantarum and L.acidophillus, respectively.


2011 ◽  
Vol 74 (4) ◽  
pp. 631-635 ◽  
Author(s):  
VASILIKI A. BLANA ◽  
AGAPI I. DOULGERAKI ◽  
GEORGE-JOHN E. NYCHAS

Fifteen fingerprints (assigned to Leuconostoc spp., Leuconostoc mesenteroides, Weissella viridescens, Leuconostoc citreum, and Lactobacillus sakei) of 89 lactic acid bacteria (LAB) isolated from minced beef stored under modified atmospheres at various temperatures were screened for their ability to exhibit autoinducer-2 (AI-2)–like activity under certain growth conditions. Cell-free meat extracts (CFME) were collected at the same time as the LAB isolates and tested for the presence of AI-2–like molecules. All bioassays were conducted using the Vibrio harveyi BAA-1117 (sensor 1−, sensor 2+) biosensor strain. The possible inhibitory effect of meat extracts on the activity of the biosensor strain was also evaluated. AI-2–like activity was observed for Leuconostoc spp. isolates, but none of the L. sakei strains produced detectable AI-2–like activity. The AI-2–like activity was evident mainly associated with the Leuconostoc sp. B 233 strain, which was the dominant isolate recovered from storage at 10 and 15°C and at the initial and middle stages of storage at chill temperatures (0 and 5°C). The tested CFME samples displayed low AI-2–like activity and inhibited AI-2 activity regardless of the indigenous bacterial populations. The LAB isolated during meat spoilage exhibited AI-2–like activity, whereas the LAB strains retrieved depended on storage time and temperature. The production of AI-2–like molecules may affect the dominance of different bacterial strains during storage. The results provide a basis for further research concerning the effect of storage temperature on the expression of genes encoding AI-2 activity and on the diversity of the ephemeral bacterial population.


10.5219/1604 ◽  
2021 ◽  
Vol 15 ◽  
pp. 995-1004
Author(s):  
Aleš Vavřiník ◽  
Kateřina Štůsková ◽  
Adrian Alumbro ◽  
Methusela Perrocha ◽  
Lenka Sochorová ◽  
...  

The presented work aimed to study the inhibition using nanoparticles produced by the green synthesis in selected acetic acid and lactic acid bacteria, which are related to viticulture. The degree of ability to eliminate silver particles produced by green syntheses was determined using the plate method on Petri dishes. This is done using two different approaches - the method of direct application of the solution to the surface of the inoculated medium (determination of inhibition zones) and the method of application using nanoparticles to the inoculated medium. Gluconobacter oxydans (CCM 3618) and Acetobacter aceti (CCM 3620T) were studied from acet acetic bacteria. The lactic acid bacteria were Lactobacillus brevis (CCM 1815) and Pediococcus damnosus (CCM 2465). The application of silver nanoparticles was always in concentrations of 0, 0.0625, 0.125, 0.25, 0.5, and 1 g.L-1. All applied concentrations of silver nanoparticles showed an inhibitory effect on the monitored microorganisms. Silver particles could be used in wine technology for their antibacterial effects, mainly to inhibit microorganisms during vinification, as a substitute for sulfur dioxide.


2019 ◽  
Vol 82 (3) ◽  
pp. 441-453 ◽  
Author(s):  
ZHENHONG GAO ◽  
ERIC BANAN-MWINE DALIRI ◽  
JUN WANG ◽  
DONGHONG LIU ◽  
SHIGUO CHEN ◽  
...  

ABSTRACT Foodborne pathogens are serious challenges to food safety and public health worldwide. Fermentation is one of many methods that may be used to inactivate and control foodborne pathogens. Many studies have reported that lactic acid bacteria (LAB) can have significant antimicrobial effects. The current review mainly focuses on the antimicrobial activity of LAB, the mechanisms of this activity, competitive growth models, and application of LAB for inhibition of foodborne pathogens.


2010 ◽  
Vol 27 (Special Issue 2) ◽  
pp. 18-27 ◽  
Author(s):  
A. Hudecová ◽  
Ľ. Valík ◽  
D. Liptáková

The growth dynamics of filamentous fungus G. candidum was studied during the co-cultivation with the commercial lactic acid bacteria (LAB) culture Fresco. The experiments were carried out in milk and on the surface of a milk agar at the temperature ranging from 5 to 37°C. Ratkowsky model was used to describe the relationships of the fungal growth rate to the temperature during both, single and co-cultivation with LAB in milk. Simultaneous growth of LAB affected significantly the growth rate of the filamentous fungus. The growth of G. candidum was in average 39% slower in the co-culture than in the single cultivation. LAB pre-inoculated and growing in the solid medium did not show any significant inhibitory effect on the surface growth of G. candidum at all tested temperature. The precise data describing the growth of this cheese yeast-like fungus, G. candidum, may fill a gap in the field of quantitative food mycology and may be used for predicting its behavior in real conditions.


2004 ◽  
Vol 22 (SI - Chem. Reactions in Foods V) ◽  
pp. S303-S305 ◽  
Author(s):  
O. Krejčová ◽  
E. Šviráková ◽  
J. Dobiáš ◽  
M. Plocková

Active packaging systems based on the application of packaging materials with incorporated and/or immobilized antimicrobial agents provides one of promising trends in food processing. The object of this work was to test the effect of polyethylene (LDPE) packaging film treated with lacquer containing 5% (w/w) Nisaplin<sup>®</sup> on the growth of lactic acid bacteria, aerobic sporeforming bacteria, Bacillus cereus and on the changes of total count of bacteria in packaged meat products and processed cheese. Peaces of cheese in contact with nisin treated film were stored at 21°C for 0, 7, and 28 days. The obtained results confirmed significant inhibitory effect of such packaging system against aerobic sporeforming bacteria, when the decrease of above mentioned bacteria contamination up to four logarithmic cycles were determined. In contact with sliced salami the significant decrease of total bacteria as well as lactic acid bacteria counts were found. During storage of packaged salami for two weeks at 5°C the total bacteria count on the surface of product in contact with the package dropped by more than one logarithmic cycles, present lactic bacteria were inhibited by more than two logarithmic cycles.


Sign in / Sign up

Export Citation Format

Share Document