Inhibitory Effect of Lactic Acid Bacteria on Foodborne Pathogens: A Review

2019 ◽  
Vol 82 (3) ◽  
pp. 441-453 ◽  
Author(s):  
ZHENHONG GAO ◽  
ERIC BANAN-MWINE DALIRI ◽  
JUN WANG ◽  
DONGHONG LIU ◽  
SHIGUO CHEN ◽  
...  

ABSTRACT Foodborne pathogens are serious challenges to food safety and public health worldwide. Fermentation is one of many methods that may be used to inactivate and control foodborne pathogens. Many studies have reported that lactic acid bacteria (LAB) can have significant antimicrobial effects. The current review mainly focuses on the antimicrobial activity of LAB, the mechanisms of this activity, competitive growth models, and application of LAB for inhibition of foodborne pathogens.

2020 ◽  
Vol 2 (1) ◽  
pp. 99

Mixed fruit juices contain microflora on the surface of fruits during the harvest and post-harvest practices. The presence of useful organisms like lactic acid bacteria from the mixed fruit wastes was explored in this study since these microbes use these wastes as a nutrient source for their growth. The lactic acid bacteria isolated using MRS medium was identified as Lactobacillus saniviri NKSS1 by 16s rRNA analysis. The bacteriocin produced by Lactobacillus saniviri NKSS1 showed inhibitory effect against the food pathogen (Listeria monocytogenes) and clinical pathogen (Acinetobacter baumannii). Optimization of bacteriocin production from Lactobacillus saniviri NKSS1 was achieved at 24 h of incubation, temperature at 35 °C with the initial medium pH of 6.5. The carbon & nitrogen sources like dextrose (3% w/v) and yeast extract (0.75% w/v) enhanced the production of bacteriocin in MRS medium. Antimicrobial activity was reduced in the partially purified bacteriocin when incubated at 95 °C for 2 h but it retained its activity in the pH range of 5.5 to 8.5. Whereas, metals like CuSO4 and MgSO4 at (0.5 % w/v) interfered with the antagonistic activity of partially purified bacteriocin. Ionic detergents like SDS and CTAB partially decreased the antimicrobial activity, while other non-ionic detergents inhibited the antimicrobial activity completely. The molecular weight of partially purified bacteriocin from Lactobacillus saniviri NKSS1 was found to be 10.9 kDa. It can be concluded that bacteriocin of L. saniviri NKSS1 holds a promising potential for extension of shelf-life and improvement of microbiological safety in food industries.


2020 ◽  
Vol 8 (2) ◽  
pp. 377-384
Author(s):  
Yong Yang ◽  
Olga Babich ◽  
Stanislav Sukhikh ◽  
Mariya Zimina ◽  
Irina Milentyeva

Introduction. Increased resistance of microorganisms to traditional antibiotics has created a practical need for isolating and synthesizing new antibiotics. We aimed to study the antibiotic activity and resistance of bacteriocins produced by lactic acid bacteria and other microorganisms. Study objects and methods. We studied the isolates of the following microorganism strains: Bacillus subtilis, Penicillium glabrum, Penicillium lagena, Pseudomonas koreenis, Penicillium ochrochloron, Leuconostoc lactis, Lactobacillus plantarum, Leuconostoc mesenteroides, Pediococcus acidilactici, Leuconostoc mesenteroides, Pediococcus pentosaceus, Lactobacillus casei, Lactobacillus fermentum, Bacteroides hypermegas, Bacteroides ruminicola, Pediococcus damnosus, Bacteroides paurosaccharolyticus, Halobacillus profundi, Geobacillus stearothermophilus, and Bacillus caldotenax. Pathogenic test strains included Escherichia coli, Salmonella enterica, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus mycoides, Alcaligenes faecalis, and Proteus vulgaris. The titer of microorganisms was determined by optical density measurements at 595 nm. Results and discussion. We found that eleven microorganisms out of twenty showed high antimicrobial activity against all test strains of pathogenic and opportunistic microorganisms. All the Bacteroides strains exhibited little antimicrobial activity against Gramnegative test strains, while Halobacillus profundi had an inhibitory effect on Gram-positive species only. The Penicillium strains also displayed a slight antimicrobial effect on pathogenic test strains. Conclusion. The antibiotic resistance of the studied lactic acid bacteria and other bacteriocin-producing microorganisms allows for their use in the production of pharmaceutical antibiotic drugs.


2015 ◽  
Vol 35 (4) ◽  
pp. 353-359 ◽  
Author(s):  
Larissa B. Poppi ◽  
Javier D. Rivaldi ◽  
Thais S. Coutinho ◽  
Claudete S. Astolfi-Ferreira ◽  
Antonio J. Piantino Ferreira ◽  
...  

Many attempts have been made to establish the control of foodborne pathogens through Lactobacillus isolates and their metabolism products with success being obtained in several situations. The aim of this study was to investigate the antagonistic effect of eight Lactobacillusisolates, including L. caseisubsp. pseudoplantarum,L. plantarum, L. reuteri and L. delbrueckii subsp. delbrueckii, on the pathogenic Escherichia colistrain O157:H7. The inhibitory effect of pure cultures and two pooled cultures supernatants of Lactobacillus on the growth of pathogenic bacteria was evaluated by the spot agar method and by monitoring turbidity. Antimicrobial activity was confirmed for L. reuteri and L. delbrueckii subsp. delbrueckii and for a pool of lactic acid bacteria. The neutralized supernatant of the pool exerted a higher antimicrobial activity than that of the individual strains. Furthermore, D-lactic acid and acetic acid were produced during growth of the Lactobacillus isolates studied.


LWT ◽  
2001 ◽  
Vol 34 (4) ◽  
pp. 239-243 ◽  
Author(s):  
Erika Trauth ◽  
Jean-Paul Lemaı̂tre ◽  
Christine Rojas ◽  
Charles Diviès ◽  
Rémy Cachon

Life ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 268
Author(s):  
Wei-Kuang Lai ◽  
Ying-Chen Lu ◽  
Chun-Ren Hsieh ◽  
Chien-Kei Wei ◽  
Yi-Hong Tsai ◽  
...  

Lactic acid bacteria have functions in immunoregulation, antagonism, and pathogen inhibition. The purpose of this study was to evaluate the effectiveness of lactic acid bacteria (LAB) in countering oral pathogens and develop related products. After a series of assays to 450 LAB strains, 8 heat-inactivated strains showed a strong inhibitory effect on a caries pathogen, Streptococcus mutans, and 308 heat-inactivated LAB strains showed a strong inhibitory effect on a periodontal pathogen, Porphyromonas gingivalis. The key reasons for inhibiting oral pathogens were bacteriocins produced by LAB and the coaggregation effect of the inactivated cells. We selected Lacticaseibacillus (Lb) paracasei 111 and Lb.paracasei 141, which had the strongest inhibitory effects on the above pathogens, was the main oral health food source. The optimal cultural conditions of Lb. paracasei 111 and Lb. paracasei 141 were studied. An oral tablet with a shelf life of 446 days made of the above strains was developed. A 40 volunteers’ clinical study (CSMUH IRB number: CS05065) was conducted with this tablet in the Periodontological Department of the Stomatology Research Center, Affiliated Hospital of Chung Shan Medical University (Taiwan). After 8 weeks of testing, 95% and 78.9% of patients showed an effect on reducing periodontal pathogens and improving probing pocket depth, respectively, in the oral tablet group.


2014 ◽  
Vol 52 (7) ◽  
pp. 4124-4134 ◽  
Author(s):  
Joana Šalomskienė ◽  
Asta Abraitienė ◽  
Dovilė Jonkuvienė ◽  
Irena Mačionienė ◽  
Jūratė Repečkienė

2005 ◽  
Vol 15 (6-9) ◽  
pp. 857-871 ◽  
Author(s):  
S. Lortal ◽  
M.-P. Chapot-Chartier

Microbiology ◽  
2021 ◽  
Vol 167 (11) ◽  
Author(s):  
Alberto Gonçalves Evangelista ◽  
Jessica Audrey Feijó Corrêa ◽  
João Vitor Garcia dos Santos ◽  
Eduardo Henrique Custódio Matté ◽  
Mônica Moura Milek ◽  
...  

The genus Salmonella is closely associated with foodborne outbreaks and animal diseases, and reports of antimicrobial resistance in Salmonella species are frequent. Several alternatives have been developed to control this pathogen, such as cell-free supernatants (CFS). Our objective here was to evaluate the use of lactic acid bacteria (LAB) CFS against Salmonella in vitro. Seventeen strains of LAB were used to produce CFS, and their antimicrobial activity was screened towards six strains of Salmonella . In addition, CFS were also pH-neutralized and/or boiled. Those with the best results were lyophilized. MICs of lyophilized CFS were 11.25–22.5 g l–1. Freeze-dried CFS were also used to supplement swine and poultry feed (11.25 g kg–1) and in vitro simulated digestion of both species was performed, with Salmonella contamination of 5×106 and 2×105 c.f.u. g−1 of swine and poultry feed, respectively. In the antimicrobial screening, all acidic CFS were able to inhibit the growth of Salmonella . After pH neutralization, Lactobacillus acidophilus Llorente, Limosilactobacillus fermentum CCT 1629, Lactiplantibacillus plantarum PUCPR44, Limosilactobacillus reuteri BioGaia, Lacticaseibacillus rhamnosus ATCC 7469 and Pediococcus pentosaceus UM116 CFS were the only strains that partially maintained their antimicrobial activity and, therefore, were chosen for lyophilization. In the simulated swine digestion, Salmonella counts were reduced ≥1.78 log c.f.u. g–1 in the digesta containing either of the CFS. In the chicken simulation, a significant reduction was obtained with all CFS used (average reduction of 0.59±0.01 log c.f.u. ml–1). In general, the lyophilized CFS of L. fermentum CCT 1629, L. rhamnosus ATCC 7469 and L. acidophilus Llorente presented better antimicrobial activity. In conclusion, CFS show potential as feed additives to control Salmonella in animal production and may be an alternative to the use of antibiotics, minimizing problems related to antimicrobial resistance.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2655 ◽  
Author(s):  
Belal J. Muhialdin ◽  
Nazamid Saari ◽  
Anis Shobirin Meor Hussin

The challenges to fulfill the demand for a safe food supply are dramatically increasing. Mycotoxins produced by certain fungi cause great economic loss and negative impact on the sustainability of food supplies. Moreover, the occurrence of mycotoxins at high levels in foods poses a high health threat for the consumers. Biological detoxification has exhibited a high potential to detoxify foodstuffs on a cost-effective and large scale. Lactic acid bacteria showed a good potential as an alternative strategy for the elimination of mycotoxins. The current review describes the health and economic impacts associated with mycotoxin contamination in foodstuffs. Moreover, this review highlights the biological detoxification of common food mycotoxins by lactic acid bacteria.


Sign in / Sign up

Export Citation Format

Share Document